Principal Eigenvalue for Cooperative (p,q)-biharmonic Systems

LEADI Liamidi A.^{1,*} and TOYOU Robert L.²

 ¹ Département de Mathématiques, Faculté des Sciences et Techniques (FAST), Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), 01 BP: 613, Porto-Novo, Benin Republic.
 ² Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), 01 BP: 613, Porto-Novo, Benin Republic.

Received 10 April 2018; Accepted 15 March 2019

Abstract. In this article, we are interested in the simplicity and the existence of the first strictly principal eigenvalue or semitrivial principal eigenvalue of the (p,q)-biharmonic systems with Navier boundary conditions.

AMS Subject Classifications: 35J40, 35J60, 35J66

Chinese Library Classifications: O175.2, O175.9

Key Words: Nonlinear eigenvalue problem; (p,q)-biharmonic systems; Navier boundary conditions.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ (with $N \ge 1$) be a bounded domain with smooth boundary $\partial \Omega$ and α , β , p, q be constants such that $\alpha \ge 0$, $\beta \ge 0$, p > 1, q > 1 and $\frac{\alpha + 1}{p} + \frac{\beta + 1}{q} = 1$.

Our aim is to study the following eigenvalue problem

$$(Q): \begin{cases} \Delta_p^2 u - \lambda m_1(x) |u|^{p-2} u = m(x) |v|^{\beta+1} |u|^{\alpha-1} u & \text{in } \Omega, \\ \Delta_q^2 v - \lambda m_2(x) |v|^{q-2} v = m(x) |u|^{\alpha+1} |v|^{\beta-1} v & \text{in } \Omega, \\ u = \Delta u = v = \Delta v = 0 & \text{on } \partial\Omega, \end{cases}$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* leadiare@imsp-uac.org, leadiare@yahoo.com (Liamidi Arèmou Leadi), robert.toyou@imsp-uac.org (Robert Lawouè Toyou)

where $\Delta_p^2 u = \Delta(|\Delta u|^{p-2}\Delta u)$ is the *p*-biharmonic operator and λ is a real parameter. The coefficients $m_1, m_2, m \in L^{\infty}(\Omega)$ are assumed to be nonnegatives in Ω .

In [1], Talbi and Tsouli have investigated the scalar version of problem (*Q*) with $m \equiv 0$, which reads

$$(P_{a,p,\rho}): \begin{cases} \Delta(\rho | \Delta u |^{p-2} \Delta u) = \lambda a(x) |u|^{p-2} u & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\rho \in C(\overline{\Omega})$ such that $\rho > 0$ and $a \in L^{\infty}(\Omega)$. They proved that $(P_{a,p,\rho})$ possesses at least one non-decreasing sequence of eigenvalues and studied $(P_{a,p,\rho})$ in the particular one dimensional case. The authors, in the same reference gave the first eigenvalue $\lambda_{1,p,\rho}(a)$ and showed that if $a \ge 0$ a.e. in Ω , then $\lambda_{1,p,\rho}(a)$ is simple (i.e. the associated eigenfunctions are a constant multiple of one another) and principal i.e. the associated eigenfunction, denoted by $\varphi_{p,\rho,a}$ is positive or negative on Ω with

$$\lambda_{1,p,\rho}(a) = \inf_{u \in \mathcal{A}} \int_{\Omega} \rho |\Delta u|^p \mathrm{d}x, \qquad (1.1)$$

where

$$\mathcal{A} = \left\{ u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) : \int_\Omega a|u|^p \mathrm{d}x = 1 \right\}.$$
(1.2)

The problem $(P_{a,p,\rho})$ was considered by P. Drábek and M. Otani for $\rho \equiv 1$ and $a \equiv 1$ [2]. By using a transformation of the problem to a known Poisson problem, they showed that $(P_{a,p,\rho})$ has a principal positive eigenvalue which is simple and isolated. In the case N=1 they gave a description of all eigenvalues and associated eigenfunctions.

El Khalil et al. [3] also considered problem $(P_{a,p,\rho})$ for $\rho \equiv 1$, $a \equiv 1$ with Dirichlet boundary conditions and showed that the spectrum contains at least one non-decreasing sequence of positive eigenvalues.

Benedikt [4] gave the spectrum of the p-biharmonic operator with Dirichlet and Neumann boundary conditions in the case N = 1, $\rho \equiv 1$ and $a \equiv 1$.

It is important to note that (u,λ) is solution of problem $(P_{m_1,p,1})$ if and only if $[(u,0);\lambda]$ is solution of (Q). This kind of solution is called "semitrivial solution" of (Q). Furthermore if $[(u,0);\lambda]$ is solution of (Q) with u of one sign on Ω , then λ is called "semitrivial principal eigenvalue" of (Q). Consequently, there are two forms of semitrivial solutions for problem (Q): one of the type $[(u,0);\lambda]$ with $u \neq 0$ and (u,λ) solution of the problem $(P_{m_1,p,1})$ and the second of the type $[(0,v);\lambda]$ with $v \neq 0$ and (v,λ) solution of the problem $(P_{m_2,q,1})$. In particular $\lambda_{1,p,1}(m_1)$ and $\lambda_{1,q,1}(m_2)$ are semitrivial principal eigenvalues of (Q).

This paper is organized as follows. We construct the eigencurve associated to problem (Q) in Section 2. Section 3 is devoted to the study of strictly principal eigenvalue of (Q).