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Abstract. This paper consider the Cauchy problem for a class of 1D generalized Boussi-
nesq equations utt−uxx−uxxtt+uxxxx+uxxxxtt= f (u)xx. By utilizing the potential well
method and giving some conditions on f (u), we obtain the invariance of some sets
and obtain the threshold result of global existence and nonexistence of solutions.
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1 Introduction

In this paper, our main purpose is to study the Cauchy problem for the generalized

Boussinesq equations

utt−uxx−uxxtt+uxxxx+uxxxxtt= f (u)xx, x∈R, t>0, (1.1)

u(x,0)=u0(x), ut(x,0)=u1(x), x∈R. (1.2)

Here we give some assumptions on f (u) as follows

(H1)

{

f (u)=±|u|p, p>4 and p 6=2k, k=3,4,··· ,

or f (u)=−|u|p−1u, p>4 and p 6=2k+1, k=2,3,··· ,

(H2) f (u)=±u2k, or f (u)=−u2k+1u, k=1,2,··· .
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In 1872, J. Boussinesq [1] proposed the classical Boussinesq equation

utt=−γuxxxx+uxx+(u2)xx. (1.3)

This equation describes the propagation of small amplitude long waves on the surface of

shallow water and gives a scientific explanation of the existence to solitary waves. The

following nonlinear partial differential equation

utt+uxxxx= a(u2
x)x, (1.4)

was derived in the study of weakly nonlinear analysis of elasto-plastic-microstructure

models for longitudinal motion of elasto-plastic bar [2], where a is a constant.

Instead of the term uxxxx, Eq. (1.3) became the famous improved Boussinesq equation

(the IBq equation)

utt−uxx−uxxtt=(u2)xx, (1.5)

which describes the propagation of long waves on shallow water as well. Makhankov [3]

pointed out that the IBq equation

utt−∆u−∆utt =∆(u2) (1.6)

can be given by starting with the exact hydro-dynamical set of equations in plasma, and a

modification of the IBq equation analogous to the modified Korteweg-de Vries equation

yields

utt−∆u−∆utt =∆(u3). (1.7)

Eq. (1.7) is the so-called IMBq (modified IBq) equation. Wang and Chen [4, 5] gave the

local and global solution and the solution which blows up in finite time. Further, they

considered the Cauchy problem of the multidimensional generalized IMBq equation

utt−∆u−∆utt =∆ f (u), (1.8)

and obtained the golbal existence of small amplitude solution.

Schneider [6] investigated the following nonlinear wave equation

utt−uxx−uxxtt−µuxxxx+uxxxxtt=(u2)xx, (1.9)

which describes the water wave problem with surface tension. The model can also be

formally derived from the two-dimensional water wave problem. The Eq. (1.9) is called

“bad” Boussinesq equation as µ>0 and “good” Boussineq equation as µ<0. The classical

Boussinesq equation can be extended to a more natural model [7]

utt−uxx−(µ+1)uxxxx+uxxxxxx=(u2)xx. (1.10)


