doi: 10.4208/jpde.v29.n1.7 March 2016

Asymptotic Behavior of the Solution to a 3-D Simplified Energy-Transport Model for Semiconductors

LIU Chundi*, LI Yong and WANG Shu

College of Applied Science, Beijing University of Technology, Beijing 100124, China.

Received 5 December 2015; Accepted 22 January 2016

Abstract. The well-posedness of smooth solution to a 3-D simplified Energy-Transport model is discussed in this paper. We prove the local existence, uniqueness, and asymptotic behavior of solution to the equations with hybrid cross-diffusion. The smooth solution convergences to a stationary solution with an exponential rate as time tends to infinity when the initial date is a small perturbation of the stationary solution.

AMS Subject Classifications: 35M10, 35K65, 76N10

Chinese Library Classifications: O175.29

Key Words: Energy-Transport model; Gagliardo-Nirenberg inequality; asymptotic behavior.

1 Introduction

Energy-Transport model was first proposed by Stratton [1] and latter derived from the semiconductor Boltzmann equation by Ben Abdallah et al. [2]. The strong coupling and temperature gradients make it difficult to analyze the energy-transport model. Therefore, we consider in this paper a simplified energy-transport model which still includes temperature gradients with weakly coupling of the energy equation.

The simplified Energy-Transport model, achieved by Jüngel et al. in [3], consists of a drift-diffusion-type equation for the electron density n(x,t), a nonlinear heat equation for the electron temperature $\theta(x,t)$, and the Poisson equation for the electric potential V(x,t):

$$\partial_t n - \operatorname{div}(\nabla(n\theta) - n\nabla V) = 0, \tag{1.1}$$

$$\operatorname{div}(\kappa(n)\nabla\theta) = \frac{n}{\tau}(\theta - \theta_L(x)), \qquad (1.2)$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* liuchundi@emails.bjut.edu.cn (C. D. Liu), yli@bjut.edu.cn (Y. Li), wangshu@bjut.edu.cn (S. Wang)

$$\lambda^2 \triangle V = n - C(x). \tag{1.3}$$

Here, $\kappa(n)$ is the thermal conductivity, we suppose that $\kappa(n) = n$, $\theta_L(x)$ is the lattice temperature, and C(x) is the doping profile characterizing the device under consideration. The energy relaxation time $\tau > 0$ and the Debye length $\lambda > 0$ are scaled physical parameters. Without lose of generality, we suppose that $\tau = \theta_L(x) = \lambda = 1$, and set $E(x,t) = \nabla V(x,t)$. Then the model (1.1)-(1.3) can be changed into the following model for the electron density n(x,t), the electron temperature $\theta(x,t)$ and the electric field E(x,t):

$$\partial_t n - \operatorname{div} j = 0, \quad j = (\nabla(n\theta) - nE),$$
(1.4)

$$\operatorname{div}(n\nabla\theta) = n(\theta - 1),\tag{1.5}$$

$$\operatorname{div} E = n - C(x). \tag{1.6}$$

Eqs. (1.4)-(1.6) hold in the bounded main $\Omega \subset R^3$, with the initial boundary condition

$$n(x,0) = n_0(x), \tag{1.7}$$

$$j \cdot \vec{n}|_{\partial\Omega} = 0, \quad \nabla \theta \cdot \vec{n}|_{\partial\Omega} = 0, \quad E \cdot \vec{n}|_{\partial\Omega} = 0,$$
 (1.8)

where \vec{n} denotes the exterior unit normal vector on $\partial \Omega$, and the initial datum $n_0(x)$ satisfies the following condition

$$\int_{\Omega} n_0(x) - C(x) dx = 0.$$
 (1.9)

Before we exposit our results, we review the energy-transport model in the literature. The common form for energy-transport model [4] is

$$\partial_t n - \frac{1}{q} \operatorname{div} J_n = 0,$$

$$\partial_t U(n,\theta) - \operatorname{div} J_w = -J_n \cdot \nabla V + W(n,\theta),$$

$$\lambda^2 \triangle V = n - C(x),$$

with

$$J_n = L_{11} \left(\frac{\nabla n}{n} - \frac{q \nabla V}{k_B \theta} \right) + \left(\frac{L_{12}}{k_B \theta} - \frac{3}{2} L_{11} \right) \frac{\nabla \theta}{\theta},$$

$$q J_w = L_{21} \left(\frac{\nabla n}{n} - \frac{q \nabla V}{k_B \theta} \right) + \left(\frac{L_{22}}{k_B \theta} - \frac{3}{2} L_{21} \right) \frac{\nabla \theta}{\theta},$$

where $U(x,\theta)$ is the density of the internal energy, $W(n,\theta)$ is the energy relaxation term satisfying $W(n,\theta)(\theta - \theta_L(x)) \le 0$,

$$W(n,\theta) = -\frac{n(\theta - \theta_L(x))}{\tau_{\beta}}, \quad \tau_{\beta} = \frac{\pi^{\frac{5}{2}}\theta^{\frac{1}{2} - \beta}}{\sqrt{8}\Gamma(\beta + 2)s_0}$$

72