Existence of Renormalized Solutions for Nonlinear Parabolic Equations

AKDIM Y.¹, BENKIRANE A.², EL MOUMNI M.² and REDWANE H.^{3,*}

¹ Faculté Poly-disciplinaire de Taza, B.P 1223 Taza Gare, Maroc.

² Laboratory of Mathematical Analysis and Applications, Department of

Mathematics, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Atlas-Fès, Morocco.

³ Faculté des sciences juridiques, Economiques et Sociales, Université Hassan 1 B.P. 784, Settat, Morocco.

Received 5 February 2013; Accepted 24 October 2013

Abstract. We give an existence result of a renormalized solution for a class of nonlinear parabolic equations

$$\frac{\partial b(x,u)}{\partial t} - \operatorname{div}\left(a(x,t,u,\nabla u)\right) + g(x,t,u,\nabla u) + H(x,t,\nabla u) = f, \quad \text{in } Q_T,$$

where the right side belongs to $L^{p'}(0,T;W^{-1,p'}(\Omega))$ and where b(x,u) is unbounded function of u and where $-\operatorname{div}(a(x,t,u,\nabla u))$ is a Leray–Lions type operator with growth $|\nabla u|^{p-1}$ in ∇u . The critical growth condition on g is with respect to ∇u and no growth condition with respect to u, while the function $H(x,t,\nabla u)$ grows as $|\nabla u|^{p-1}$.

AMS Subject Classifications: 35K10, 47D20, 46E35 Chinese Library Classifications: 0175.23, 0175.26

Key Words: Nonlinear parabolic equations; renormalized solutions; Sobolev spaces.

1 Introduction

In the present paper, we study a nonlinear parabolic problem of the type

$$\begin{cases} \frac{\partial b(x,u)}{\partial t} - \operatorname{div}\left(a(x,t,u,\nabla u)\right) + g(x,t,u,\nabla u) + H(x,t,\nabla u) = f, & \text{in } Q_T, \\ b(x,u)(t=0) = 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega \times (0,T), \end{cases}$$
(1.1)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* akdimyoussef@yahoo.fr (Y. Akdim), abd.benkirane@gmail.com (A. Benkirane), mostafaelmoumni@gmail.com, (M. EL Moumni) redwane_hicham@yahoo.fr (H. Redwane)

where Ω is a bounded open subset of \mathbb{R}^N , $N \ge 1$, T > 0, p > 1 and Q_T is the cylinder $\Omega \times (0,T)$. The operator $-\operatorname{div}(a(x,t,u,\nabla u))$ is a Leray-Lions operator which is coercive and grows like $|\nabla u|^{p-1}$ with respect to ∇u , the function b(x,u) is an unbounded on u. The functions g and H are two the Carathéodory functions with suitable assumptions (see Assumption (H_2)). Finally the data f is in $L^{p'}(0,T;W^{-1,p'}(\Omega))$. We are interested in proving an existence result to (1.1). The difficulties connected to this problem are due to the data and the presence of the two terms g and H which induce a lack of coercivity.

For b(x,u) = u, the existence of a weak solution to Problem (1.1) (which belongs to $L^m(0,T;W_0^{1,m}(\Omega))$ with p > 2-1/(N+1) and m < (p(N+1)-N)/N+1 was proved in [1] (see also [2]) when g=H=0, and in [3] when g=0, and in [4–6] when H=0. In the present paper we prove the existence of renormalized solutions for a class of nonlinear parabolic problems (1.1). The notion of renormalized solution was introduced by Diperna and Lions [7] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (1.1) by Boccardo et al. [8] when the right hand side is in $W^{-1,p'}(\Omega)$, by Rakotoson [9] when the right hand side is in $L^1(\Omega)$, and finally by Dal Maso, Murat, Orsina and Prignet [10] for the case of right hand side is general measure data.

In the case where H=0 and where the function $g(x,t,u,\nabla u) \equiv g(u)$ is independent on the $(x,t,\nabla u)$ and g is continuous, the existence of a renormalized solution to Problem (1.1) is proved in [11]. The case H=0 is studied by Akdim et al. (see [12,13]). The case H=0 and where g depends on (x,t,u) is investigated in [14]. In [15] the authors prove the existence of a renormalized solution for the complete operator. The case $g(x,t,u,\nabla u) \equiv \operatorname{div}(\phi(u))$ and H=0 is studied by Redwane in the classical Sobolev spaces $W^{1,p}(\Omega)$ and Orlicz spaces see [16, 17], and where b(x,u) = u (see [18]).

The aim of the present paper we prove an existence result for renormalized solutions to a class of problems (1.1) with the two lower order terms. It is worth noting that for the analogous elliptic equation with two lower order terms (see e.g. [19,20]). The plan of the article is as follows. In Section 2 we make precise all the assumptions on b, a, g, H, f and give the definition of a renormalized solution of (1.1). In Section 3 we establish the existence of such a solution (Theorem 3.1).

2 Basic assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true:

Assumption (H1)

Let Ω be a bounded open set of \mathbb{R}^N ($N \ge 1$), T > 0 is given and we set $Q_T = \Omega \times (0,T)$, and

 $b: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, (2.1)

such that for every $x \in \Omega$, b(x, .) is a strictly increasing C^1 -function with b(x, 0) = 0.