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Abstract. In this paper, by using the Nehari manifold and variational methods, we
study the existence and multiplicity of positive solutions for a multi-singular quasilin-
ear elliptic problem with critical growth terms in bounded domains. We prove that the
equation has at least two positive solutions when the parameters A belongs to a certain
subset of R.
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1 Introduction
In this paper, we consider the following quasilinear elliptic problem

ko |ulP?u 2 -2 :
—Dpu— Y = f(x)|ulP ~fu+Ag(x)|u|14u, in Q),
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u=0, on o).

(1.1)

where QO C RN (N >3) is a bounded domain with smooth boundary 9Q) such that the
pointsa;€Q),i=1,2,--- k, k>2,0<p; <u:=((N—p)/p)?, and p*:= (pN)/(N—p) is the
critical Sobolev exponent and 1<g<p, A >0 and f,g are continuous functions.
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Problem (1.1) is related to the following Hardy inequality [1-3]:
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In this paper, for Y5, u; €[0,7), we use W = Wé’p (Q) to denote the completion of C§°(Q))
with respect to the norm
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which by (1.2), this norm is equivalent to the standard norm ( [|Vu|dx) v on W.

Definition 1.1. We say that u € W is weak solution to (1.1) if for all v € W we have
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By the standard elliptic regularity argument, we have that the solution u € C>(Q\
{a1,a2,--,a;})NC (Q\ {ay,a0,-- ,ar}). Tt is well known that the nontrivial solution of
problem (1.1) is equivalent to the corresponding nonzero critical points of the energy
functional
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for every uc W.
For0<pu;<pand a;€Q),i=1,2,--- k, we let Su; be the best Sobolev embedding constant
defined by
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Sy;:= in (1.3)
ueW\{0} (fQ‘u’de) V*
and from [4], we get that S, is independent of ().
In [5], the authors studied the following limiting problem:
-1 *_ .
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u>0, ue DV'P(RN), in RN\ {g;},

where 0<u <71, 1<p<N and D?(RN)={u e LP (RN): Vu e L*(RN) }. They have prove
that the problem (1.4) has rad1a11y symmetric ground state
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