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Abstract. In this paper we present some results concerning the optimal shape design
problem governed by the fourth-order variational inequalities. The problem can be
considered as a model example for the design of the shapes for elastic-plastic problem.
The computations are done by finite element method, and the performance criterion
is minimized by the material derivative method. We also discuss the error estimates
in the appropriate norm and present some numerical results. An example is used to
clearly illustrate the essential elements of shape design problems.
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1 Introduction

The purpose of this paper is to develop an optimal shape design which governed by
the variational inequalities of the fourth-order for the design of the shape for an elastic-
plastic problem. Much work has been done in the optimal shape design for systems
described by partial differential equations [1], the main idea of this paper is to obtain the
optimal shape design for the systems described by differential inequalities by introducing
penalized differential equations and then taking limits of the equations resulting from the
penalized or differential approximation. We develop the material derivative method [2]
for the optimal shape design of an elastic-plastic problem. The problem arises when
studying the torsion of a cylindrical bar of the section Ω⊂ℜ2, the bar is made of an elastic
plastic material, f is a constant proportional to the angle of twist of the end section of the
bar which is not clamped. Several authors have proposed and studied the elastic plastic
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problem (see, [3–5]). For the formulation of the problem we consider a domain Ω, which
consists of two regions Ωe and Ωp (the elastic region and plastic region, respectively).
Then the stress potential ϕ satisfies the fourth-order partial differential equation on Ω,

µϕ+Aϕ= f in Ωe(situated in the interior of Ω), (1.1a)

|∆ϕ|=1 in Ωp, (1.1b)

with boundary conditions
ϕ=∂ϕ/∂n=0 on Γ, (1.2)

where µ is a nonnegative constant.
Consider the Sobolev space Hm(Ω) of real-valued function having derivatives upto

the order m, summed with square; Hm
0 (Ω) be the closure of infinitely differentiable func-

tions in the norm Hm(Ω). Let V=H2(Ω)∩H2
0(Ω), and

H2
0(Ω)=

{

φ
∣

∣

∣
φ∈H2(Ω), φ|Γ =

∂φ

∂n

∣

∣

∣

Γ
=0

}

, (1.3)

since the domain Ω is bounded and Γ is sufficiently regular the mapping

φ→‖∆φ‖L2(Ω),

defines on V a norm which is equivalent to that induced by H2(Ω). Let us assume that
f ∈H−2(Ω) (which is a topological dual of H2

0(Ω)); it is well known that (1.1a) admits one
and only one solution in H2

0(Ω); this solution is also the unique solution of the variational
equation (of order 4), for all ϕ∈H2

0(Ω)

∫

Ω
(∆ϕ∆φ+µϕφ)dx= 〈 f ,φ〉, ∀φ∈H2

0(Ω), (1.4)

which is also the solution of the minimization problem

min
φ∈H2

0(Ω)

[

1/2
∫

Ω
|∆φ|2dx−〈 f ,φ〉

]

. (1.5)

In (1.4) and (1.5), 〈·,·〉 represents the bilinear form of the duality between H−2(Ω) and
H2

0(Ω), and we thus have

〈 f ,φ〉=
∫

Ω
f φdx,

and

a(φ,ψ)=
∫

Ω
∆φ(x)∆ψ(x)dx, ∀φ,ψ∈H2

0(Ω).

Finally, let K be the closed convex subset of V, defined by

K=
{

φ|φ∈H2
0(Ω), |∆φ|≤1 a.e. in Ω

}

. (1.6)


