Existence of a Renormalised Solutions for a Class of Nonlinear Degenerated Parabolic Problems with L¹ Data

AKDIM Y.¹, BENNOUNA J.¹, MEKKOUR M.^{1,*} and REDWANE H.²

 ¹ Department of Mathematics, Laboratory LAMA, University of Fez, Faculty of Sciences Dhar El Mahraz, B.P. 1796. Atlas Fez, Morocco.
² Faculté des Sciences Juridiques, Économiques et Sociales, Université Hassan 1, B.P. 784. Settat, Morocco.

Received 7 August 2012; Accepted 14 December 2012

Abstract. We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carathéodory function satisfying the coercivity condition, the growth condition and only the large monotonicity. The data belongs to $L^1(Q)$.

AMS Subject Classifications: A7A15, A6A32, 47D20

Chinese Library Classifications: O175.27

Key Words: Weighted Sobolev spaces; truncations; nonlinear doubling parabolic equation; renormalized solutions.

1 Introduction

Let Ω be a bounded open set of \mathbb{R}^N , p be a real number such that $2 \le p < \infty$, $Q = \Omega \times]0, T[$ and $w = \{w_i(x), 0 \le i \le N\}$ be a vector of weight functions (i.e., every component $w_i(x)$ is a measurable function which is positive a.e. in Ω) satisfying some integrability conditions. The objective of this paper is to study the following problem in the weighted Sobolev space:

$$\begin{cases} \frac{\partial b(u)}{\partial t} - \operatorname{div}(a(x,t,u,Du)) + \operatorname{div}(\phi(u)) = f, & \text{in } Q, \\ b(x,u)(t=0) = b(x,u_0), & \text{in } \Omega, \\ u=0, & \text{on } \partial\Omega \times]0, T[. \end{cases}$$
(1.1)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* akdimyoussef@yahoo.fr (Y. Akdim), jbennouna@hotmail.com (J. Bennouna), mekkour.mounir@yahoo.fr (M. Mekkour), redwane_hicham@yahoo.fr (H. Redwane)

The function *b* is assumed to be a strictly increasing C^1 -function, the data *f* and $b(u_0)$ lie in $L^1(Q)$ and $L^1(\Omega)$, respectively. The functions ϕ is just assumed to be continuous of \mathbb{R} with values in \mathbb{R}^N , and the Carathéodory function *a* satisfying only the large monotonicity (see assumption (H_2)).

Let us point out, the difficulties that arise in problem (1.1) are due to the following facts: the data f and u_0 only belong to L^1 , a satisfies the large monotonicity that is

$$[a(x,t,s,\xi)-a(x,t,s,\eta)](\xi-\eta) \ge 0, \quad \text{for all } (\xi,\eta) \in \mathbb{R}^N \times \mathbb{R}^N,$$

and the function $\phi(u)$ does not belong to $(L^1_{loc}(Q))^N$ (because the function ϕ is just assumed to be continuous on \mathbb{R}). To overcome this difficulty, we will apply Landes's technical (see [1,2]) and the framework of renormalized solutions. This notion was introduced by Diperna and P.-L. Lions [3] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (1.1) by L. Boccardo et al. [4] when the right hand side is in $W^{-1,p'}(\Omega)$, by J.-M. Rakotoson [5] when the right hand side is in $L^1(\Omega)$, and finally by G. Dal Maso, F. Murat, L. Orsina and A. Prignet [6] for the case of right hand side is general measure data.

For the parabolic equation (1.1) the existence of weak solution has been proved by J.-M. Rakotoson [7] with the strict monotonicity and a measure data, the existence and uniqueness of a renormalized solution has been proved by D. Blanchard and F. Murat [8] in the case where $a(x,t,s,\xi)$ is independent of $s, \phi = 0$, and by D.Blanchard, F. Murat and H. Redwane [9] with the large monotonicity on a.

For the degenerated parabolic equations the existence of weak solutions have been proved by L. Aharouch et al. [10] in the case where *a* is strictly monotone, $\phi = 0$ and $f \in L^{p'}(0,T,W^{-1, p'}(\Omega,w^*))$. See also the existence of renormalized solution by Y.Akdim et al [11] in the case where $a(x,t,s,\xi)$ is independent of *s* and $\phi = 0$.

Note that, this paper can be seen as a generalization of [9, 10] in weighted case and as a continuation of [11].

The plan of the paper is as follows. In Section 2 we give some preliminaries and the definition of weighted Sobolev spaces. In Section 3 we make precise all the assumptions on a, ϕ , f and u_0 . In Section 4 we give some technical results. In Section 5 we give the definition of a renormalized solution of (1.1) and we establish the existence of such a solution (Theorem 5.1). Section 6 is devoted to an example which illustrates our abstract result.

2 Preliminaries

Let Ω be a bounded open set of \mathbb{R}^N , p be a real number such that $1 and <math>w = \{w_i(x), 0 \le i \le N\}$ be a vector of weight functions, i.e., every component $w_i(x)$ is a measurable function which is strictly positive a.e. in Ω . Further, we suppose in all our considerations