doi: 10.4208/jpde.v25.n4.3 November 2012

The Equation $\Delta u + \nabla \phi \cdot \nabla u = 8\pi c(1 - he^u)$ on a Riemann Surface

WANG Meng^{1,*} and LIU Qingyue²

¹ Department of Mathematics, Zhejiang University, Hangzhou 310027, China.
² Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences,

Wuhan 430071, China.

Received 20 January 2012; Accepted 10 June 2012

Abstract. Let *M* be a compact Riemann surface, h(x) a positive smooth function on *M*, and $\phi(x)$ a smooth function on *M* which satisfies that $\int_M e^{\phi} dV_g = 1$. In this paper, we consider the functional

$$J(u) = \frac{1}{2} \int_{M} |\nabla u|^2 e^{\phi} \mathrm{d}V_g + 8\pi c \int_{M} u e^{\phi} \mathrm{d}V_g - 8\pi c \log \int_{M} h e^{u+\phi} \mathrm{d}V_g.$$

We give a sufficient condition under which *J* achieves its minimum for $c \leq \inf_{x \in M} e^{\phi(x)}$. AMS Subject Classifications: 58J05

Chinese Library Classifications: O192

Key Words: Compact Riemann surface; nonlinear elliptic equation; gauss curvature; existence of solution.

1 Introduction

Suppose that *M* is a complete *n*-dimensional Riemannian manifold with metric *g*, assume that ϕ is a smooth real valued function on *M*, and dV_g is the Riemannian density on *M*, Wei and Wylie studied mean curvature and volume comparison results on the smooth measure space $(M^n, g, e^{\phi} dV_g)$ (see [1]). This is also sometimes called a manifold with density. The corresponding Bakry-Emery Ricci tensor is defined as $\text{Ric}_{-\phi} = \text{Ric} - \text{Hess}\phi$. The equation $\text{Ric}_{-\phi} = \lambda g$ for some constant λ is the gradient Ricci soliton equation. It plays important role in the theory of the of Ricci flow. So this measure space is interesting. We are interested in the Dirichlet integral on this measure space:

$$D_{\phi}(u) = \int_{M} |\nabla u|^2 e^{\phi} \mathrm{d} V_g.$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. Email addresses: mathdreamcn@zju.edu.cn (M. Wang), qyliu@amss.ac.cn (Q. Liu)

The operator $\Delta + \nabla \phi \cdot \nabla$ is the naturally associated $(\phi -)$ Laplacian which is self-adjoint with respect to the weighted measure $e^{\phi} dV_g$ (see [1]). The critical point of D_{ϕ} is a ϕ -harmonic function which satisfies that

$$(\Delta + \nabla \phi \cdot \nabla)(u) = 0.$$

In [1], Wei and Wylie proved some comparison theorems related to the $(\phi -)$ Laplacian.

Let (M, ds^2) be a compact Riemann surface, suppose that h(x) and $\phi(x)$ are smooth functions on M. Moreover maxh > 0. For simplicity, we assume in this paper that $\int_M e^{\phi} dV_g = 1$.

On the measure space $(M^n, g, e^{\phi} dV_g)$, we study the functional

$$J(u) = \frac{1}{2} \int_{M} |\nabla u|^2 e^{\phi} dV_g + 8\pi c \int_{M} u e^{\phi} dV_g - 8\pi c \log \int_{M} h e^{u+\phi} dV_g$$

the critical point of the functional satisfies the equation

$$\Delta u + \nabla \phi \cdot \nabla u = 8\pi c - 8\pi che^{u}, \tag{1.1}$$

where *c* is a constant, or we can rewrite it as

$$\operatorname{div}(e^{\phi}\nabla u) = 8\pi c e^{\phi} - 8\pi \operatorname{ch} e^{u+\phi}$$

If $\phi \equiv 0$ and c=1, Kazdan and Warner studied it thirty years ago [2]. They asked under what kind of conditions on *h*, the equation

$$\Delta u = 8\pi - 8\pi h e^u \tag{1.2}$$

has a solution. For general *c*, the equation

$$\Delta u = 8\pi c - 8\pi che^{u}$$

is also studied by many authors, see [3,4].

One sees that (1.1) is a natural generalization of (1.2), when one studies the measure space $(M^n, g, e^{\phi} dV_g)$ instead of (M^n, g, dV_g) . In this paper, we study the existence of Eq. (1.1), which can be seen as the first step to understand the equation.

We will follow the paper [5], to minimize the functional J(u).

By [5, Theorem 1.1], we can get that the functional

$$J_{\varepsilon}(u) = \frac{1}{2} \int_{M} |\nabla u|^2 e^{\phi} \mathrm{d}V_g + 8\pi(\rho - \varepsilon) \int_{M} u e^{\phi} \mathrm{d}V_g - 8\pi(\rho - \varepsilon) \log \int_{M} h e^{u + \phi} \mathrm{d}V_g,$$

achieves its minimum at some u_{ε} , where $\rho = \min_{x \in M} e^{\phi(x)}$. If $||u_{\varepsilon}||_{L^{2}_{1}(M)}$ is not bounded, we can show that the blow up point p is the minimum point of e^{ϕ} . Then after subtracting mean values, u_{ε} converges to some Green function G(x,p) (sometimes we denote $G(x,p) = G_{p}(x)$ for simplicity) satisfying

$$\begin{cases} \operatorname{div}(e^{\phi}\nabla G_p) = 8\pi\rho e^{\phi} - 8\pi\rho\delta_p, \\ \int_M G_p e^{\phi} \mathrm{d}V_g = 0. \end{cases}$$
(1.3)