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Abstract. Semi-linear n×n systems of the form A∂u/∂x+B∂u/∂y=f can generally be
solved, at least locally, provided data are imposed on non-characteristic curves. There
are at most n characteristic curves and they are determined by the coefficient matri-
ces on the left-hand sides of the equations. We consider cases where such problems
become degenerate as a result of ambiguity associated with the definition of character-
istic curves. In such cases, the existence of solutions requires restrictions on the data
and solutions might not be unique.
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1 Introduction

It is well known that the Cauchy-Kowalevski Theorem tells us that a problem of the form

A
∂u

∂x
+B

∂u

∂y
= f, (1.1)

where u is an n-dimensional vector and A and B are n×n constant matrices, has an an-

alytic solution, at least locally, provided we have analytic data on a non-characteristic

analytic curve. The unique solution can be determined, locally, by solving n scalar equa-

tions given by (1.1), in conjunction with the n found by differentiating the Cauchy data

u=U0(t) on x=x0(t) (1.2)
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along the curve (x,y) = x = x0(t) = (x0(t),y0(t)), to find the 2n first partial derivatives

∂u/∂x and ∂u/∂y. An entirely equivalent way of thinking about characteristics is to

regard them as curves across which u can have discontinuous first derivatives.

The Cauchy-Kowalevski argument fails when the curve is characteristic so that

λ=
dx

dt
, µ=

dy

dt
(not both zero) (1.3)

are such that (1.1) together with the equations got from differentiating (1.2), in vector

form

λ
∂u

∂x
+µ

∂u

∂y
=U′

0, (1.4)

fail to have a unique solution. This of course happens with λ, µ such that
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where I is the n×n identity matrix. Equivalently,
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= |µA−λB|=0. (1.6)

For “most” problems, with no sort of degeneracy associated with the left-hand side of

(1.1), the condition (1.5) would make the curve direction (λ,µ) that of the characteristic.

In the present paper we consider problems such that (1.5) holds for all λ, µ, so that,

whatever direction is used, the system (1.1) fails to have a unique solution. We anticipate

that, since the coefficient matrix of the combined system

(

A B

λI µI

)(

∂u/∂x

∂u/∂y

)

=

(

f

U′
0

)

(1.7)

is singular, whatever data curve is chosen, at least one compatibility condition relating f

and u0 has to be satisfied if the problem (1.1), (1.2) is to have a solution; moreover, that if

this condition holds, the problem can have multiple solutions. It is clear that degeneracy

is associated with the rank of µA−λB being identically less than n.


