
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 24, No. 4, pp. 351-360

doi: 10.4208/jpde.v24.n4.6
November 2011

Symmetry and Uniqueness of Solutions of an

Integral System

ZHANG Zhengce1,∗ and JIANG Minji2

1 College of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China.
2 Beijing Areospace Control Center, Beijing 5130-109, P. R. China.

Received 27 September 2010; Accepted 25 May 2011

Abstract. In this paper, we study the positive solutions for a class of integral systems
and prove that all the solutions are radially symmetric and monotonically decreas-
ing about some point. Moreover, we also obtain the uniqueness result for a special
case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our
new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maxi-
mum Principle.
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1 Introduction

In this paper, we study positive solutions of the following system of integral equations in

R
N 




u(x)=
∫

RN

u(y)k+v(y)p

|x−y|N−α
dy

v(x)=
∫

RN

u(y)q+v(y)t

|x−y|N−α
dy

(1.1)

with k = p = q = t = (N+α)/(N−α) and 0 < α < N. Under the local integrability con-

ditions u∈ L
2N/(N−α)
loc (RN) and v ∈ L

2N/(N−α)
loc (RN), we first prove that all the solutions

are radially symmetric and monotonically decreasing about some point, then we also ob-

tain the uniqueness result for the special case α= 2. We shall use a new type of moving

plane method introduced by Chen-Li-Ou, which technically uses the Hardy-Littlewood-

Sobolev inequality instead of Maximum Principle.
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The integral system (1.1) is closely related to the system of PDEs

{
(−∆)α/2u=uk+vp,

(−∆)α/2v=uq+vt,
u,v>0 in R

N. (1.2)

In fact, every positive smooth solution of PDE (1.2) multiplied by a constant satisfies

(1.1). This can be easily verified as in the proof of Theorem 4.5 in [1]. We also refer this

equivalence to [2] for a system with α=2. In fact, in (1.2), we define the positive solution

of (1.2) in the distribution sense, i.e., u,v∈Hα/2(RN) satisfies, for any φ∈C∞
0 and φ≥0,





∫

RN
(−∆)α/4u(−∆)α/4φdx=

∫

RN
[uk(x)+vp(x)]φ(x)dx,

∫

RN
(−∆)α/4v(−∆)α/4φdx=

∫

RN
[uq(x)+vt(x)]φ(x)dx,

(1.3)

where ∫

RN
(−∆)α/4u(−∆)α/4φdx and

∫

RN
(−∆)α/4v(−∆)α/4φdx

are defined by the Fourier transform
∫

RN
|ξ|α û(ξ)φ̂(ξ)dξ and

∫

RN
|ξ|α û(ξ)φ̂(ξ)dξ.

Here, û,v̂ and φ̂ are the Fourier transforms of u,v and φ, respectively. By taking limits,

one can see that (1.3) is also true for any φ∈Hα/2.

Since we shall use Hardy-Littlewood-Sobolev inequality to prove radial symmetry

and monotonicity of our solutions, we begin by recalling the well-known Hardy-Little-

wood-Sobolev inequality. Let λ,s,r be real numbers satisfying 0 < α < N, r, s > 1, and

‖ f‖p be the Lp(RN) norm of the function f . We shall write by ‖ f‖Lp(Ω) the Lp norm of

the function f on the domain Ω. Then the classical Hardy-Littlewood-Sobolev inequality

states that ∫

RN

∫

RN

f (x)g(y)

|x−y|N−α
dxdy≤C‖ f‖r‖g‖s (1.4)

for any f ∈ Lr(RN), g ∈ Ls(RN), and 1/r+1/s = (N+α)/N. To find the best constant

C=C(α,s,N) in the inequality, one can maximize the functional

J( f ,g)=
∫

RN

∫

RN

f (x)g(y)

|x−y|N−α
dxdy (1.5)

under the constraints ‖ f‖r =‖g‖s =1.

There are some related works about this paper. When k= p= q= t=(N+α)/(N−α)
and u(x)=v(x), System (1.1) becomes the single equation

u(x)=
∫

RN

u(y)
N+α
N−α

|x−y|N−α
dy, u>0 in R

N. (1.6)


