doi: 10.4208/jpde.v24.n4.6 November 2011

Symmetry and Uniqueness of Solutions of an Integral System

ZHANG Zhengce^{1,*} and JIANG Minji²

¹ College of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

² Beijing Areospace Control Center, Beijing 5130-109, P. R. China.

Received 27 September 2010; Accepted 25 May 2011

Abstract. In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.

AMS Subject Classifications: 35J65, 35J25, 35B50

Chinese Library Classifications: O175.5

Key Words: Radial symmetry; uniqueness; integral system; moving plane method.

1 Introduction

In this paper, we study positive solutions of the following system of integral equations in \mathbb{R}^N

$$\begin{cases} u(x) = \int_{\mathbb{R}^{N}} \frac{u(y)^{k} + v(y)^{p}}{|x - y|^{N - \alpha}} dy \\ v(x) = \int_{\mathbb{R}^{N}} \frac{u(y)^{q} + v(y)^{t}}{|x - y|^{N - \alpha}} dy \end{cases}$$
(1.1)

with $k = p = q = t = (N+\alpha)/(N-\alpha)$ and $0 < \alpha < N$. Under the local integrability conditions $u \in L^{2N/(N-\alpha)}_{loc}(\mathbb{R}^N)$ and $v \in L^{2N/(N-\alpha)}_{loc}(\mathbb{R}^N)$, we first prove that all the solutions are radially symmetric and monotonically decreasing about some point, then we also obtain the uniqueness result for the special case $\alpha = 2$. We shall use a new type of moving plane method introduced by Chen-Li-Ou, which technically uses the Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* zhangzc@mail.xjtu.edu.cn (Z. Zhang), 2003jmj@163.com (M. Jiang)

The integral system (1.1) is closely related to the system of PDEs

$$\begin{cases} (-\Delta)^{\alpha/2} u = u^k + v^p, \\ (-\Delta)^{\alpha/2} v = u^q + v^t, \end{cases} \quad u, v > 0 \text{ in } \mathbb{R}^N.$$

$$(1.2)$$

In fact, every positive smooth solution of PDE (1.2) multiplied by a constant satisfies (1.1). This can be easily verified as in the proof of Theorem 4.5 in [1]. We also refer this equivalence to [2] for a system with $\alpha = 2$. In fact, in (1.2), we define the positive solution of (1.2) in the distribution sense, i.e., $u, v \in H^{\alpha/2}(\mathbb{R}^N)$ satisfies, for any $\phi \in C_0^{\infty}$ and $\phi \ge 0$,

$$\begin{cases} \int_{\mathbb{R}^N} (-\Delta)^{\alpha/4} u(-\Delta)^{\alpha/4} \phi dx = \int_{\mathbb{R}^N} [u^k(x) + v^p(x)] \phi(x) dx, \\ \int_{\mathbb{R}^N} (-\Delta)^{\alpha/4} v(-\Delta)^{\alpha/4} \phi dx = \int_{\mathbb{R}^N} [u^q(x) + v^t(x)] \phi(x) dx, \end{cases}$$
(1.3)

where

$$\int_{\mathbb{R}^{N}} (-\Delta)^{\alpha/4} u (-\Delta)^{\alpha/4} \phi dx \quad \text{and} \quad \int_{\mathbb{R}^{N}} (-\Delta)^{\alpha/4} v (-\Delta)^{\alpha/4} \phi dx$$

are defined by the Fourier transform

$$\int_{\mathbb{R}^N} |\xi|^{\alpha} \widehat{u}(\xi) \widehat{\phi}(\xi) \mathrm{d}\xi \quad \text{and} \quad \int_{\mathbb{R}^N} |\xi|^{\alpha} \widehat{u}(\xi) \widehat{\phi}(\xi) \mathrm{d}\xi.$$

Here, \hat{u}, \hat{v} and $\hat{\phi}$ are the Fourier transforms of u, v and ϕ , respectively. By taking limits, one can see that (1.3) is also true for any $\phi \in H^{\alpha/2}$.

Since we shall use Hardy-Littlewood-Sobolev inequality to prove radial symmetry and monotonicity of our solutions, we begin by recalling the well-known Hardy-Littlewood-Sobolev inequality. Let λ ,*s*,*r* be real numbers satisfying $0 < \alpha < N$, *r*, *s* > 1, and $||f||_p$ be the $L^p(\mathbb{R}^N)$ norm of the function *f*. We shall write by $||f||_{L^p(\Omega)}$ the L^p norm of the function *f* on the domain Ω . Then the classical Hardy-Littlewood-Sobolev inequality states that

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{f(x)g(y)}{|x-y|^{N-\alpha}} \mathrm{d}x \mathrm{d}y \le C \|f\|_r \|g\|_s \tag{1.4}$$

for any $f \in L^r(\mathbb{R}^N)$, $g \in L^s(\mathbb{R}^N)$, and $1/r+1/s = (N+\alpha)/N$. To find the best constant $C = C(\alpha, s, N)$ in the inequality, one can maximize the functional

$$J(f,g) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{f(x)g(y)}{|x-y|^{N-\alpha}} dx dy$$
(1.5)

under the constraints $||f||_r = ||g||_s = 1$.

There are some related works about this paper. When $k = p = q = t = (N+\alpha)/(N-\alpha)$ and u(x) = v(x), System (1.1) becomes the single equation

$$u(x) = \int_{\mathbb{R}^N} \frac{u(y)^{\frac{N+\alpha}{N-\alpha}}}{|x-y|^{N-\alpha}} \mathrm{d}y, \qquad u > 0 \text{ in } \mathbb{R}^N.$$
(1.6)

352