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Abstract. We consider steady compressible Navier–Stokes–Fourier system in a bound-
ed two-dimensional domain with the pressure law p(̺,ϑ)∼ ̺ϑ+̺lnα(1+̺). For the
heat flux q ∼−(1+ϑm)∇ϑ we show the existence of a weak solution provided α >

max{1,1/m}, m>0. This improves the recent result from [1].
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1 Introduction, main result

We consider the following system of partial differential equations

div(̺u)=0, (1.1)

div(̺u⊗u)−divS+∇p=̺f, (1.2)

div(̺Eu)=̺f·u−div(pu)+div(Su)−divq. (1.3)

It is a well-known model for steady flow of a compressible heat conducting fluid. Here,

̺ is the density of the fluid, u is the velocity field, S the viscous part of the stress tensor,

p the pressure, f the external force, E the specific total energy and q the heat flux. We

consider system (1.1)–(1.3) in a bounded domain Ω⊂R
2. At the boundary ∂Ω we assume

the boundary conditions

u=0, (1.4)
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−q·n+L(ϑ−Θ0)=0, (1.5)

with n the outer normal to ∂Ω, L=const>0 and Θ0=Θ0(x)>0, both given. Furthermore,

the total mass of the fluid ∫

Ω
̺ dx=M>0 (1.6)

is also given.

We have to specify the constitutive relations for the quantities S, p, E and q. The fluid

is assumed to be newtonian, i.e. we have

S=S(ϑ,u)=µ(ϑ)
[

∇u+(∇u)T−divuI
]

+ξ(ϑ)divuI, (1.7)

with viscosity coefficients µ(ϑ) and ξ(ϑ). In our paper, we consider the viscosity coeffi-

cients to be given globally Lipschitz functions of the temperature ϑ such that

c1(1+ϑ)≤µ(ϑ)≤ c2(1+ϑ), 0≤ ξ(ϑ)≤ c2(1+ϑ). (1.8)

The heat flux satisfies the Fourier law

q=q(ϑ,∇ϑ)=−κ(ϑ)∇ϑ, (1.9)

with κ(·)∈C([0,∞)) such that for a certain m>0

c3(1+ϑm)≤κ(ϑ)≤ c4(1+ϑm). (1.10)

The specific total energy E has the form

E=E(̺,ϑ,u)=
1

2
|u|2+e(̺,ϑ), (1.11)

where e stands for the specific internal energy; we will specify this quantity below.

We consider the pressure law of the form

p= p(̺,ϑ)=̺ϑ+
̺2

̺+1
lnα(1+̺) (1.12)

with α > 0. In agreement with the second law of thermodynamics, there exists specific

entropy, a function of ̺ and ϑ, given up to an additive constant by the Gibbs relation

1

ϑ

(

De(̺,ϑ)+p(̺,ϑ)D
( 1

̺

))

=Ds(̺,ϑ). (1.13)

The specific entropy, due to (1.2) and (1.3), fulfills

div(̺su)+div
(q

ϑ

)

=
S :∇u

ϑ
− q·∇ϑ

ϑ2
(1.14)


