doi: 10.4208/jpde.v23.n4.1 November 2010

On Existence of Ground States for Some Elliptic Systems

WEI Gongming*

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.

Received 28 August 2007; Accepted 31 August 2010

Abstract. In this paper we consider the existence of ground states for some 2- coupled nonlinear Schrödinger systems with or without potentials. Under various conditions on the parameters in the equations, we prove the existence of ground states.

AMS Subject Classifications: 35J50

Chinese Library Classifications: O175.2

Key Words: Ground state; solution manifold; critical point theory; coupled nonlinear Schrödinger system.

1 Introduction

In this paper, we consider the existence of ground states of

$$\begin{cases} \Delta u - \lambda_1 u + \mu_1 u^3 + \beta u v^2 = 0, \\ \Delta v - \lambda_2 v + \mu_2 v^3 + \beta u^2 v = 0, \end{cases} \quad \text{in } \mathbf{R}^n, \tag{1.1}$$

and

$$\begin{cases} \Delta u - V_1(x)u + \mu_1 u^3 + \beta u v^2 = 0, \\ \Delta v - V_2(x)v + \mu_2 v^3 + \beta u^2 v = 0, \end{cases} \text{ in } \mathbf{R}^n, \tag{1.2}$$

where n = 1,2,3, λ_i 's are positive constants and V_i 's are smooth positive potentials and bounded from below. Problem (1.1) has applications in many physical problems, especially in nonlinear optics. Problem (1.2) arises in the Hartree-Fock theory for a double condensate, i.e. a binary mixture of Bose-Einstein condensates in two different hyperfine

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email address:* gmweixy@163.com (G. Wei)

states. The coupling constant β describes the interaction between these two states. μ_i 's are for self-focusing or de-focusing of the single states, depending on their signs. Let

$$E_i = \left\{ u \in H^1(\mathbf{R}^n) \left| \int_{\mathbf{R}^n} V_i(x) u^2 \mathrm{d}x < \infty \right\} \right.$$

and $E = E_1 \times E_2$. In this paper, our assumptions on $V_i(x)$'s are the following:

(H) E_i 's are compactly imbedded into $L^p(\mathbf{R}^n)$ for $2 \le p < 2^*$.

This assumption is a generalization of [1] and [2].

Theorem 1.1. Suppose $\mu_i \leq 0$ and $\beta > \sqrt{\mu_1 \mu_2}$. Then problem (1.1) has ground state.

Theorem 1.2. Suppose V_i's satisfy assumption (H) and one of the following conditions:

(*i*) $\mu_i > 0$, $\beta < 0$; (*ii*) $\mu_i > 0$, $\beta > \beta_0$ for some positive constant β_0 ; (*iii*) $\mu_i \le 0$, $\beta > \sqrt{\mu_1 \mu_2}$. Then problem (1.2) has ground state.

Many authors have studied the existence and multiplicity of solutions of the following Schrödinger equation

$$\Delta u - V(x)u + f(u) = 0, \quad x \in \mathbf{R}^n$$

under general assumptions on V, see, e.g., [1–10]. Since the milestone work of Floer and Weinstein [11], there have been a lot of works on the existence and concentration of ground states of the singularly perturbed problem

$$h^2 \Delta u - V(x)u + f(u) = 0, \quad x \in \mathbf{R}^n$$

as $h \rightarrow 0+$, see, e.g., [12–15]. Ni [16] provided a comprehensive review on Gierer-Meinhardt type equations and motivated many interesting singularly perturbed problems.

Recently, several authors have considered problems (1.1) and (1.2), including the existence and concentration of ground states, see, e.g., [17–22]. One of the main techniques in their papers is to employ Nehari's solution manifold, which was used in [23] to solve Nehari's problem and developed to deal with Gierer-Meihardt system in [24]. This paper is a continuation and complement of the above results on existence of ground states.

2 **Proof of Theorem 1.1**

Proof. Let $H = H^1 \times H^1$, where $H^1 = H^1(\mathbf{R}^n)$ is the Sobolev space. Define

$$c = \inf_{(u,v)\in N} I(u,v),$$