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Abstract. We study capillary spreadings of thin films of liquids of power-law rheol-
ogy. These satisfy
ut+ (u/\+2 | uxxx‘)\iluxxx)x =0,

where u(x,t) represents the thickness of the one-dimensional liquid and A >1. We look
for traveling wave solutions so that u(x,t) =g (x+ct) and thus g satisfies
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We show that for each € >0 there is an infinitely oscillating solution, g¢, such that

lim ge =€

t—o00

and that g¢ — go as e =0, where g9 =0 for >0 and
3A
go=cy|t|2A+T for £<0

for some constant c,.
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1 Introduction

In this work, we study capillary spreadings of thin films of liquids of power-law rheology,
also known as Ostwald-de Waele fluids. The following equation for one-dimensional
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motion was derived in [1, 2] and is
A+2 A—1
U+ (u + ‘uxxx‘ uxxx) =0,
X

where A is a real constant and u(x,t) represents the thickness of the one-dimensional
liquid film at position x and time t. See also [3,4]. When A > 1, the fluid is called shear
thinning and the viscosity tends to zero at high strain rates [5]. Typical values for A are
between 1.7 and 6.7 [6].

For gravity driven spreadings studied in [7], u(x,t) satisfies

up— <u)‘+2]ux\A_lux) =0.
X
If we look for traveling wave solutions of the above equation so that u(x,t) =g (x+ct) for
some nonzero ¢ € R, we obtain

/
cg' = (181
and thus

c(g—K)=g¢""2g'" ¢

for some constant K. In the case K=0 we obtain
g(z)=d(z—z) 70

for some constant d which represents a current advancing with constant speed, c, and
front located at x = —ct—z¢. In particular, this differential equation has no oscillatory
traveling wave solutions. Similarly, in the case K # 0 there are no oscillatory traveling
wave solutions. If ¢’'(my) =g’ (my) =0 with m; <mjy, then it follows from the differential
equation that g(mq) = K= g(my). Now let M be the maximum (or minimum) of ¢ on
[m1,m3]. Then ¢'(M) =0 and thus g(M) =K. Thus ¢=K on [m,m].

In this paper, we will study traveling wave solutions for capillarity-driven spreadings

in which case we obtain
Cg’—l— <g/\+2’g///‘/\—1g///> ! —0

and so

Cg+gA+2 ’g///’/\flg/// —K.

If we expect that ¢ will be essentially constant as t — oo, say € > 0, then this gives the
equation
c(g—e) _i_g)\-&-z‘g///’)x—lg/// —0.

This reduces to
c
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