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1 Introduction

Various boundary value problems on bounded domains in the Euclidean space for the
Laplacian and p-Laplacian and their applications in nonlinear problems have been stud-
ied extensively, see [1,2] and references therein. Boundary value problems (including the
Dirichlet eigenvalue problem) for the sub-Laplacian in the Heisenberg group and Carnot
groups have also received some attention in recent years, see, e.g., [3, 4] and references
therein. However, we have not seen the results for the Dirichlet eigenvalue problem of
the p-sub-Laplacian (p>1) in the Carnot group.

In this paper, we consider the ratio of the first and second eigenvalues for the Dirichlet
problem,

{

−∆G,pu=λ|u|p−2u, in Ω,

u=0, on ∂Ω,
(1.1)

where Ω is a bounded domain with smooth boundary in the Carnot group G, ∆G,p is the
p-sub-Laplacian in G with the form

∆G,pu=∇G ·(|∇Gu|p−2∇Gu), p>1.
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Here ∇Gu = (X1u,··· ,Xmu), {Xj}
m
j=1is a left-invariant basis of the first floor of the Lie

algebra corresponding to the Carnot group.

Definition 1.1. A pair (u,λ)∈W
1,p
0 (Ω)×R is a weak solution of the Dirichlet problem (1.1)

provided that
∫

Ω
|∇Gu|p−2〈∇Gu,∇Gv〉dx=λ

∫

Ω
|u|p−2uvdx, (1.2)

for any v∈W
1,p
0 (Ω), where such a pair(u,λ), with u nontrivial, is called an eigenpair; λ is an

eigenvalue and u is called an associated eigenfunction. By choosing v=u in (1.2), it follows that
all eigenvalues λ are nonnegative.

The arguments as in the Euclidean space show easily that the existence of eigenval-
ues, simplicity of the first eigenvalue in (1.1) and the variational characterization of the
second eigenvalue are true. The authors in [2] provided the fundamental eigenvalue ra-
tio of the p-Laplacian in the Euclidean space. We hope to give such estimates for the
p-sub-Laplacian in the Carnot group G. In Section 2, some relevant facts on the Carnot
group are presented. Nevertheless, when the method in [2] is used to our case, some
new difficulties appear. For our purpose, in Section 3, several Hardy-type inequalities
are established. Note that D’Ambrosio [5] obtained the following inequality on bounded
domains in G

c
∫

Ω

|u|p

φp
|∇Gφ|pdx≤

∫

Ω
|∇Gu|pdx,

where u∈W
1,p
0 (Ω), φ is some weight function such that

−∆G,pφ=∇G(|∇Gφ|p−2 ·∇Gφ)≥0.

Because of the appearance of the weight |∇Gφ|p, we find that such class of inequalities
cannot be applied to estimate eigenvalues in our case. We also relate a useful property

of the Sobolev space W
1,p
0 (Ω) in this section. The final section is devoted to the estimates

for the first and second eigenvalues based on the results above.

2 Preliminaries

We collect some notations and properties for the Carnot group (see, e.g., [6–8]).
The Carnot group G=(R

n,·) is a connected and simply connected nilpotent Lie group
whose Lie algebra g possesses a stratification, i.e., there exist linear subspaces V1,··· ,Vk of
g such that

g=V1⊕······⊕Vk, [V1,Vi]=Vi+1, i=1,··· ,k−1, and [V1,Vk]=0,

where [V1,Vi] is the subspace of g generated by the elements [X,Y] with X∈V1,Y∈Vi. In
this way we get a Carnot group of step k and the integer k≥1 is the step of G.


