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Abstract We prove the local existence and uniqueness of week solution of the

hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one

dimensional case, we prove also the global existence and uniqueness of the solution for

the problem.
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1. Introduction

Let u(x, t) and v(x, t) represent the population of an organism and an external

signal at place x ∈ Ω ⊂ RN and time t respectively, in general speaking, the external

signal is produced by the individuals and decays, which is described by a nonlinear

function g(v, u). Under the spatial spread of the external signal is driven by diffusion,

the full system for u and v reads (see [1-3])

ut = ∇(d∇u− χ(v)∇v · u), (1)

vt = d∆v + g(v, u). (2)

In the case of that the external stimulus were based on the light (or the electro-

magnetic wave), H. Chen and S. Wu [4] studied following hyperbolic-parabolic type

chemotaxis system:

ut = ∇(d∇u− χ(v)∇v · u), (3)

vtt = d∆v + g(v, u), (4)
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where v represents the potential function of the external signal, for example, if the

external signal is the electromagnetic field, then v would be voltage (in this case ∇v

denotes the electromagnetic field).

The result of [4] gives the existence and uniqueness of the solution for the system

(3)-(4) with Neumann boundary value condition on a smoothly bounded open domain

Ω and g(v, u) = −v + f(u). In this paper, we shall study the case for more general

nonlinear term g(v, u).

Throughout this article, we assume that we can choose a constant σ, satisfying

1 < σ < 2, (5)

N < 2σ < N + 2, (6)

σ − 1 ≥
N

4
, (7)

where 1 ≤ N ≤ 3 are space dimensions.

It is easy to check that there exists some constant σ such that the three conditions

above can be simultaneously satisfied in the cases of 1 ≤ N ≤ 3. In fact, we can choose

σ = 5
4 for N = 1, σ = 13

8 for N = 2 and σ = 15
8 for N = 3.

Next, we define

Xt0 = C([0, t0],H
σ(Ω) ∩ {

∂u

∂n
= 0 on ∂Ω}),

X∞ = C([0,+∞),Hσ(Ω) ∩ {
∂u

∂n
= 0 on ∂Ω}),

Yt0 = C([0, t0],H
2(Ω) ∩ {

∂v

∂n
= 0 on ∂Ω}) ∩ C1([0, t0],H

1(Ω)),

Y∞ = C([0,+∞),H2(Ω) ∩ {
∂v

∂n
= 0 on ∂Ω}) ∩ C1([0,+∞),H1(Ω)),

and

Zt0 = C1([0, t0], L
2(Ω)), Z∞ = C1([0,∞), L2(Ω))),

Wt0 = C2([0, t0], L
2(Ω)), W∞ = C2([0,∞), L2(Ω)).

2. Local Existence and Uniqueness for g(u, v) = αuv

In this section we consider following system in which the nonlinear function g(u, v)

is a product term:































ut = ∇(∇u− χu∇v), in Ω × (0, T ),

vtt = ∆v + αuv, in Ω × (0, T ),

∂u

∂n
=
∂v

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0, v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω,

(8)


