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Abstract In this parer, by using the polar coordinates for the generalized Baouendi-

Grushin operator

Lα =
n∑

i=1

∂2

∂x2
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+
m∑

j=1

|x|2α ∂2
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j

,

where x = (x1, x2, · · · , xn) ∈ R
n, y = (y1, y2, · · · , ym) ∈ R

m, α > 0, we obtain the

volume of the ball associated to Lα and prove the nonexistence for a second order

evolution inequality which is relative to Lα.
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1. Introduction

The polar coordinates for the Heisenberg group H1 and for the Heisenberg group

Hn were defined by Greiner [1] and D’Ambrosio [2], respectively. In [3] and [4], such

coordinates for the Grushin operator in R
n+1 and generalized Baouendi-Grushin oper-

ator

Lα =

n∑

i=1

∂2

∂x2
i

+
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|x|2α
∂2
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j

(1.1)

were studied, where x = (x1, x2, · · · , xn) ∈ R
n, y = (y1, y2, · · · , ym) ∈ R

m, α > 0.

Nonexistence results of positive solutions for singular elliptic inequality, parabolic

and hyperbolic inequality in the Euclidean space R
n have been largely considered, see
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[5, 6] and their references. The singular sub-Laplace inequality and related evolution

inequalities in the Heisenberg group Hn were studied in [2, 7]. The singular sub-elliptic

inequality and the first order evolution inequality related to Lα were considered in [4].

In this parer we will give some applications of the polar coordinates for the oper-

ator Lα. In particular, we explicitly compute the volume of the ball in the sense of

the distance associated with Lα. Also, we discuss the nonexistence for a second order

evolution inequality which is relative to Lα




utt −
d2

ψ2α
Lα(au) > |u|q, on R

n+m
∗ × (0,+∞),

u(x, y, 0) = u0(x, y), on R
n+m
∗ ,

ut(x, y, 0) = u1(x, y), on R
n+m
∗ ,

(1.2)

where a ∈ L∞(Rn+m × [0,+∞)), q > 1, R
n+m
∗ = R

n+m\{(0, 0)}. Our consideration is

motivated by D’Ambrosio [2]. Let us note that some essential differences appearing

unavoidably. We recall some known facts about the operator Lα (see[8]). Let

Zi =
∂

∂xi
, Zn+j = |x|α

∂

∂yj
(i = 1, 2, . . . , n; j = 1, 2, . . . ,m). (1.3)

Denote the generalized gradient

∇L = (Z1, . . . , Zn, Zn+1 . . . , Zn+m).

There exists a natural family of anisotropic dilations attached to Lα, i.e.,

δλ(x, y) = (λx, λα+1y), λ > 0, (x, y) ∈ R
n+m.

It leads to a homogeneous dimension for Lα

Q = n+ (α+ 1)m.

One easily examines that

Lα ◦ δλ = λ2δλ ◦ Lα,

so that Lα becomes homogeneous of degree two with respect to the anisotropic dilations.

Introduce the distance function

d(x, y) = (|x|2(α+1) + (α+ 1)2|y|2)
1

2(α+1) . (1.4)

It should also be noted that

|∇Ld|
2 = ψ2α =

|x|2α

d2α
(1.5)

and

Lαd = ψ2α
Q− 1

d
. (1.6)


