ON SOME FORWARD-BACKWARD DIFFUSION EQUATIONS

Zhang Kewei (Department of Mathematics, University of Sussex, UK) (E-mail: k.zhang@sussex.ac.uk) Dedicated to Professor K. C. Chang on his seventieth birthday (Received Apr. 25, 2006)

Abstract We describe an application of the partial differential inclusion method to the existence of Lipschitz weak solutions for certain forward-backward diffusion equations including the one-dimensional version of the Perona-Malik equation in image processing.

Key Words forward-backward diffusion equation, partial differential inclusion, relaxation property, existence of weak solutions, image processing.

2000 MR Subject Classification 35K65, 35K60, 49J45, 68U10, 94A08. **Chinese Library Classification** 0175.26, 0175.29.

In some earlier works of Professor Chang, elliptic equations with discontinuous nonlinearities were studied and set-valued mappings are used to solve such equations (see, for example [1-7] In this talk we use the partial differential inclusion method for setvalued mappings to study mainly the existence problem of the following one-dimensional forward-backward diffusion equation under the homogeneous natural boundary condition:

$$\begin{cases} u_t = a(u_x)_x, & (t,x) \in (0,T) \times (0,1) := Q_T, \\ u(0,x) = u_0(x), & 0 \le x \le l, \\ a(u_x(t,0)) = a(u_x(t,l)) = 0, & 0 \le t \le T, \end{cases}$$
(1)

where the flux function a(s) is not monotone. There are many examples of such nonmonotone $a(\cdot)$ arising from applied mathematics such as

Model 1) the general coercive forward-backward diffusion model [8] where $a(s)s > c|s|^2$ while $a(\cdot)$ is not monotone,

Model 2) the well-known one-dimensional Perona-Malik model where $a(s) = s/(1+s^2)$ in image processing for edge detection [9-13],

Model 3) the simplest double well model in the study of microstructure a(s) = f'(s) with $f(s) = \text{dist}^2(s, \{-1, 1\})$ the squared distance function and its generalizations under lower order perturbations [14, 15].

Model 4) the fast diffusion model where $a(s) = \text{sign}(s) \log |s|$ [16]. We may consider the Cauchy problem or the initial boundary value problem under the Dirichlet condition.

$$\begin{cases} u_t = a(u_x)_x, & (t, x) \in (0, T) \times \mathbf{R}, \\ u(0, x) = u_0(x), & x \in \mathbf{R} \end{cases}$$
(2)

Model 5) the two-dimensional model based on the Perona-Malik numerical scheme [9, 12]:

$$\begin{cases} u_t = a(u_x)_x + a(u_y)_y, & (t, x, y) \in (0, T) \times D := Q_T, \\ u(0, x, y) = u_0(x, y), & (x, y) \in \bar{D}, \\ \mathbf{a}(\nabla u) \cdot n = 0, \text{ on } \partial D, & 0 \le t \le T, \end{cases}$$
(3)

where D is the unit square in \mathbf{R}^2 , $\mathbf{a}(\nabla u) = (a(u_x), a(u_y))$ with $a(s) = \frac{s}{1+s^2}$ and n is the outward normal vector on ∂D .

We mainly describe the method for solving Problem 1 and Problem 2 above and briefly explain how we deal with other models.

In the pioneering work of Klaus Höllig [8], infinitely many weak solutions were constructed under the main constitutive assumption that function $a : \mathbf{R} \to \mathbf{R}$ in (1) is piecewise affine, as illustrated in Figure 1 below. The construction of solutions in [8] depends heavily on this constitutive requirement.

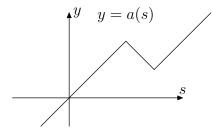


Figure 1: Shape of y = a(s) considered by Höllig

However, it is difficult to generalize Höllig's method to solve (1) with $a(\cdot)$ given by Figure 2 below.

In order to solve (1), we have to look for methods alternative to that of Höllig's.

<u>Problem 1</u> A generalization of Höllig's model

Hypothesis (A) (illustrated in Fig.2). The function $a : \mathbf{R} \to \mathbf{R}$ satisfies

i) there are two numbers $0 < s_1 < s_2$, such that $a \in C^{2,1}([s_1, s_2]^c) \cap C^0((s_1, s_2)^c);$

ii) for $s \in [s_1, s_2]^c$, a'(s) > 0, $0 < a(s_2) < a(s_1)$;