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Abstract We study some nonlinear elliptic equations on compact Riemannian
manifolds. Our main concern is to find conditions which imply that such equations
admit only constant solutions.
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1. Introduction

Motivated by some recent results and questions raised in [1], we study some non-
linear elliptic equations of the form

{
−∆gu = f(u) on M,

u > 0 on M,
(1.1)

where (M, g) is a compact Riemannian manifold of dimension n ≥ 2, without boundary,
and f : (0,+∞) → R is a smooth function. Our main concern is to find conditions on
M and f which imply that (1.1) admits only constant solutions.

We will present results in two directions:
1) The case where M = Sn, n ≥ 3, equipped with its standard metric g0
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In this case our first result is
Theorem 1 Assume that (M, g) = (Sn, g0), n ≥ 3, and

h(t) := t−
n+2
n−2

(
f(t) +

n(n− 2)
4

t

)
is decreasing on (0,∞). (1.2)

Then any solution of (1.1) is constant.
A typical example is the case

f(t) = tp − λt, p > 1, λ > 0, (1.3)

so that (1.1) becomes {
−∆gu = up − λu on Sn,

u > 0 on Sn.
(1.4)

Corollary 1 Assume that p ≤ (n + 2)/(n − 2) and λ ≤ n(n − 2)/4, and at
least one of these inequalities is strict. Then the only solution of (1.4) is the constant
u = λ1/(p−1).

In fact, Corollary 1 is originally due to Gidas-Spruck [2]. But our argument is quite
different from theirs; they rely on some remarkable identities while our method uses
moving planes.

When p = (n + 2)/(n − 2) the conclusion of Corollary 1 is sharp. Indeed if λ =
n(n−2)/4 there is a well-known family of nonconstant solutions; moreover all solutions
of (1.4) belong to this family. However when p < (n + 2)/(n − 2), B. Gidas and J.
Spruck established a better result which was later sharpened by M.F. Bidaut-Veron
and L. Veron. Namely they proved

Theorem 2([2],[3]) Assume that p < (n + 2)/(n − 2) and λ ≤ n/(p − 1). Then
the only solution of (1.4) is the constant u = λ1/(p−1).

Remark 1 The proof of Theorem 2 in [2] and [3] is based on some remarkable
identities. Our proof of Theorem 1 uses the method of moving planes. It would be very
interesting to find a proof of Theorem 2 based on moving planes.

On the other hand, bifurcation analysis (see [3] and Section 4 below) yields

Theorem 3 Assume p < (n + 2)/(n− 2) and λ > n/(p− 1) with |λ− n/(p− 1)|
small. Then there exist nonconstant solutions of (1.4).

Remark 2 When p > n+2
n−2 , there exist nonconstant solutions of (1.4) for some

values of λ < n(n−2)
4 . Indeed bifurcation theory (see Section 4 and Remark 7 there)

implies the existence of a branch of nonconstant solutions emanating from the constant
solutions at the value λ = ν

p−1 where ν = n is the second eigenvalue of −∆g0 on Sn;

note that ν
p−1 < n(n−2)

4 since p > n+2
n−2 . These solutions exist for λ < ν

p−1 and |λ− ν
p−1 |

sufficiently small.

Open Problem 1 When p > n+2
n−2 , we do not know any result asserting that

for some value of λ > 0, λ small, equation (1.4) admits only the constant solution


