SHORT COMMUNICATION SECTION

GLOBAL ATTRACTOR FOR MIXED INITIAL BOUNDARY VALUE PROBLEM FOR SOME MULTIDIMENSIONAL GINZBERG-LANDAU EQUATIONS

Fang Shaomei

(Department of Mathematics, South China Agricultural University, Guangzhou 510642; Department of Mathematics, Shaoguan University, Shaoguan 512005, China) (Received Mar. 28, 2005)

Abstract The motivation of this paper is the study of the existence of weak global attractor for mixed initial boundary value problem for some multidimensional Ginzberg-Landau equations.

Key Words Nonlinear Ginzberg-Landau equations; global attractor; Galerkin method.

 ${\bf 2000~MR~Subject~Classification} \quad 35Q35.$

Chinese Library Classification 0175.

The purpose of this is to investigate the existence of global attractor for mixed initial boundary value problem for some multidimensional Ginzberg-Landau equations

$$\overrightarrow{u_t} - \gamma \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial \overrightarrow{u}}{\partial x_j} \right) + b(x)q(|\overrightarrow{u}|^2) \overrightarrow{u} + c(x) \overrightarrow{u} = \overrightarrow{f}(x), \ x \in \Omega, \ t > 0, \quad (1)$$

$$\overrightarrow{u}(x,0) = \overrightarrow{u}_0(x), x \in \Omega, \tag{2}$$

$$\left(\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial \overrightarrow{u}}{\partial x_i} \cos(\overrightarrow{n}, x_j) + h(x) \overrightarrow{u} \right) \bigg|_{\partial \Omega} = 0, \tag{3}$$

where $\overrightarrow{u}=(u_1(x,t),u_2(x,t),\cdots,u_N(x,t))$ is an unknown complex vector-value function, Ω is a bounded domain with boundary $\partial\Omega\in C^2$, \overrightarrow{n} denotes the outward unit normal of $\partial\Omega$. On the complex functions $\overrightarrow{f}(x)=(f_1(x),f_2(x),\cdots,f_N(x))$, and the real function $a_{ij}(x),\ c(x)=(c_{ij}(x))(i,j=1,\cdots,N),\ h(x),\ b(x),\ q(s)$, we make the following assumptions

$$(1) \sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j \ge a_0 |\xi|^2, \sum_{i,j} c_{ij} \xi_i \xi_j \ge c_0 |\xi|^2, \forall x \in \Omega, \, \xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^N, \, a_0 > 0,$$

$$c_0 > 0, \, a_{ij} = a_{ji}, \, c_{ij} = c_{ji}, \, a_{ij}(x) \in C^1(\overline{\Omega}).$$

^{*}Project supported by the National Natural Science Foundation of China (10471050) and the National Natural Science Foundation of Guangdong (031495).

288 Fang Shaomei Vol.18

- (2) $c_{ij}(x) \in L^{\infty}(Q_T)(i, j = 1, \dots, N), Q_T = (0, T) \times \Omega.$
- (3) $b(x) \ge 0$, $h(x) \ge 0$, $q(s) \ge 0$, $h(x) \in C^0(\overline{\Omega})$, $q(s) \in C^1(R^+)$, $b(x) \in C^0(\overline{\Omega})$.
- (4) $\vec{f}(x) \in L^{\infty}(0,T;L^{2}(\Omega)), \ \vec{u}_{0}(x) \in H^{2}(\Omega), \ \gamma = \gamma_{0} + i\gamma_{1}, \ \gamma_{0} > 0, \ |\gamma| > 0.$

By using the uniform estimates for t we can get Theorem 1.

Theorem 1 Suppose that the problem (1)-(3) has a global smooth solution and the conditions of (1), (2), (3), (4) are satisfied; then there exists a global attractor A of the initial-boundary value problem (1)-(3), i.e., there is a set A, such that

- (i) $S_t A = A$, for $t \in \mathbb{R}^+$.
- (ii) $\lim_{t\to\infty} \operatorname{dist}(S_t B, A) = 0$, for any bounded set $B \subset H^2(\Omega)$, where

$$\operatorname{dist}(S_t B, A) = \sup_{x \in B} \inf_{y \in A} \|x - y\|_E.$$

and S_t is a semi-group operator generator generated by the problem (1)-(3).

Proof We know that there exists an operator semi-group generated by the problem (1)-(3). Thus we set the Banach space $E = H^2(\Omega)$, and $S_t : H^2(\Omega) \to H^2(\Omega)$. By using the results of Lemmas 1-4, and assuming that $B \subset H^2(\Omega)$ belongs to the ball $\{\|\overrightarrow{u}\|_{H^2} \leq R\}$, we have

$$||S_t \overrightarrow{u}_0||_E^2 = ||\overrightarrow{u}(\cdot,t)||_{H^2}^2 \le ||\overrightarrow{u}_0(x)||_{H^2}^2 + C_1||\overrightarrow{f}(x)||^2 + C_2 \le R^2 + C_3, (t \ge 0, u_0 \in B).$$

where C_1 , C_2 , C_3 are absolute constants. This means that $\{S_t\}$ is uniformly bounded in H^2 . Furthermore, from the results of the above Lemmas we see that

$$||S_t \overrightarrow{u}_0||_E^2 = ||\overrightarrow{u}(\cdot, t)||_{H^2}^2 \le 2(E_1 + E_2 + E_3 + E_4),$$

 $\forall t \geq t_0 = T_0(R, \|\overrightarrow{u}_0\|_{H^2}, \|\overrightarrow{f}(x)\|_{H^1}), \text{ Hence}$

$$\overline{A} = \{ \overrightarrow{u}(\cdot, t) \in H^2(\Omega), \| \overrightarrow{u}(\cdot, t) \|_{H^2(\Omega)} \le 2(E_1 + E_2 + E_3 + E_4) \},$$

is a bounded absorbing set of the operator semi-group S_t , thus we have the existence of weak compactness global attractor in H^2 . The proof of the theorem is now completed.

References

- [1] Nozaki K, Bekki N. Exact solutions of the generalized Ginzburg Landau equations. J. Phys. Soc. Japan, 1983, 53: 1581-1582.
- [2] Aceves A, etc. Coherent structures in partial differential equations. Phys. D, 1986, 18: 85-112.
- [3] Guo Boling, Tan Shaobin. Mixed initial boundary-value problem for some multidimensional nonlinear schrodinger equations including damping. *J. Partial Differential Equations*, 1992, **5:** 69-80.
- [4] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Second Edition, *Berlin*, *Springer-Verlag*, 1997.
- [5] Babin A V. et al. Attractors of partial differential equations and estimate of their dimension. *Uspekhi*, *Mat. Nauk*, 1983, **38**: 133.