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Abstract This paper is the parabolic counterpart of previous ones about elliptic

operators in unbounded domains. Maximum principles for second-order linear parabolic

equations are established showing a variant of the ABP-Krylov-Tso estimate, based

on the extension of a technique introduced by Cabré, which in turn makes use of a

lower bound for super-solutions due to Krylov and Safonov. The results imply the

uniqueness for the Cauchy-Dirichlet problem in a large class of infinite cylindrical and

non-cylindrical domains.
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1. Introduction and Statement of the Results

Maximum principles are basic tools in the study of both linear and nonlinear partial

differential equations. In two recent papers [1] and [2] we stated maximum principles

for second-order linear elliptic operators, extending the results of Cabré [3]. Here we

are concerned with the parabolic operators

Lw := −∂tw + aij(x, t)∂ijw + bi(x, t)∂iw + c(x, t)w (1.1)

in a domain D of R
n+1 = {(x, t) ∈ R

n × R}, with coefficients

aij = aji, b = (bibi)
1/2 ∈ L∞(D), i, j = 1, . . . , n, (1.2)

γ0|ξ|
2 ≤ aij(x, t)ξiξj ≤ Γ0|ξ|

2 ∀ξ ∈ R
n, γ0 > 0. (1.3)

In this case the maximum principle, which is related to the uniqueness in the

Cauchy-Dirichlet problem for parabolic equations, is formulated in a different man-

ner with respect to the elliptic case: it says that the solutions are controlled by the

values on the “parabolic boundary” of D in R
n+1, which for instance, in the case of

a cylindrical domain D = Ω × (0, T ), consists of the union of lower base Ω × {0} and
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side surface ∂Ω × [0, T ]. To treat more general domains, following Cabré [3], which

in turn is based on Krylov [4], we define the parabolic boundary ∂pD of D as the set

of all the points (y, s) ∈ ∂D for which there exist ε > 0 and a continuous function

x(t), t ∈ [s, s + ε] such that

x(s) = y and (x(t), t) ∈ D for t ∈]s, s + ε]. (1.4)

Let W 2,1
n+1,loc(D) be the class of functions which belong to W 2,1

n+1(H) for all bounded

open subsets H of D, where W 2,1
n+1(H) is the completion of C∞(H̄) under the norm

‖w‖W 2,1
n+1(H) = ‖∂tw‖Ln+1(H) +

n
∑

i,j

‖∂ijw‖Ln+1(H)

+
n

∑

i

‖∂iw‖Ln+1(H) + ‖w‖C(H̄). (1.5)

Definition 1.1(maximum principle) We say that the maximum principle holds

for the operator L in D if






Lw ≥ 0 inD

w ≤ 0 on ∂pD
(1.6)

implies w ≤ 0 in D for w ∈ W 2,1
n+1,loc(D) ∩ C(D̄) bounded above.

We will assume c(x, t) ≤ 0, but in the case of domains which are bounded from

below in the time-direction, it is sufficient for the maximum principle where c(x, t) is

bounded above, due to the fact that for a subsolution w(x, t) of Lw = 0, the function

v(x, t) = e−λtw(x, t) is a subsolution of Lv−λv = 0. Moreover we observe that already

in the elliptic case the maximum principle may fail to hold when w is not bounded

above.

It is well known that the maximum principle holds in the upper half-space R
n×R+.

This is based on the strong maximum principle due to Nirenberg [5], which asserts

that, if the maximum M = supD w+ of a subsolution w of Lw = 0 in a domain D of

R
n+1 achieved in a point (x̄, t̄) ∈ D, then w = M in every point (x, t) ∈ D, which can

be joined with (x̄, t̄) through a path in D consisting only of horizontal segments and

upwards vertical segments. The maximum principle follows by finding suitable barrier

functions which allow to locate M at a finite point (see [6]). This seems not possible in

general in the case of a domain which is not bounded from below in the time-direction.

On the other part from the elliptic theory we deduce that the maximum principle is

violated in the exterior domain outside the cylinder B1 ×R, over the unit ball B1 in R
3

centered at the origin, by the stationary solution w(x, t) = 1 − 1/|x|.

Our purpose is to show that however in a large class of domains D, which are not

bounded from below in the time-direction, the maximum principle continues to hold.

We will need, in a sense that will be clear below, ”enough parabolic boundary” near

all the points of D. The idea is to adapt the device of Cabré [3] for the parabolic


