MAXIMUM PRINCIPLES FOR SECOND-ORDER PARABOLIC EQUATIONS

Antonio Vitolo (Dipartimento di Matematica e Informatica, Università di Salerno, Italy) (E-mail: vitolo@unisa.it) (Received Dec. 18, 2003)

Abstract This paper is the parabolic counterpart of previous ones about elliptic operators in unbounded domains. Maximum principles for second-order linear parabolic equations are established showing a variant of the ABP-Krylov-Tso estimate, based on the extension of a technique introduced by Cabré, which in turn makes use of a lower bound for super-solutions due to Krylov and Safonov. The results imply the uniqueness for the Cauchy-Dirichlet problem in a large class of infinite cylindrical and non-cylindrical domains.

Key Words Maximum principle; ABP estimate; parabolic equations.
2000 MR Subject Classification 35K10, 35K15, 35K20.
Chinese Library Classification 0175.26

1. Introduction and Statement of the Results

Maximum principles are basic tools in the study of both linear and nonlinear partial differential equations. In two recent papers [1] and [2] we stated maximum principles for second-order linear elliptic operators, extending the results of Cabré [3]. Here we are concerned with the parabolic operators

$$Lw := -\partial_t w + a_{ij}(x,t)\partial_{ij}w + b_i(x,t)\partial_i w + c(x,t)w$$
(1.1)

in a domain D of $\mathbb{R}^{n+1} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R}\}$, with coefficients

$$a_{ij} = a_{ji}, \ b = (b_i b_i)^{1/2} \in L^{\infty}(D), \ i, j = 1, \dots, n,$$
 (1.2)

$$\gamma_0|\xi|^2 \le a_{ij}(x,t)\xi_i\xi_j \le \Gamma_0|\xi|^2 \quad \forall \xi \in \mathbb{R}^n, \ \gamma_0 > 0.$$

$$(1.3)$$

In this case the maximum principle, which is related to the uniqueness in the Cauchy-Dirichlet problem for parabolic equations, is formulated in a different manner with respect to the elliptic case: it says that the solutions are controlled by the values on the "parabolic boundary" of D in \mathbb{R}^{n+1} , which for instance, in the case of a cylindrical domain $D = \Omega \times (0, T)$, consists of the union of lower base $\Omega \times \{0\}$ and

side surface $\partial \Omega \times [0,T]$. To treat more general domains, following Cabré [3], which in turn is based on Krylov [4], we define the parabolic boundary $\partial_p D$ of D as the set of all the points $(y,s) \in \partial D$ for which there exist $\varepsilon > 0$ and a continuous function $x(t), t \in [s, s + \varepsilon]$ such that

$$x(s) = y$$
 and $(x(t), t) \in D$ for $t \in]s, s + \varepsilon].$ (1.4)

Let $W_{n+1,loc}^{2,1}(D)$ be the class of functions which belong to $W_{n+1}^{2,1}(H)$ for all bounded open subsets H of D, where $W_{n+1}^{2,1}(H)$ is the completion of $C^{\infty}(\bar{H})$ under the norm

$$\|w\|_{W^{2,1}_{n+1}(H)} = \|\partial_t w\|_{L^{n+1}(H)} + \sum_{i,j}^n \|\partial_{ij} w\|_{L^{n+1}(H)} + \sum_i^n \|\partial_i w\|_{L^{n+1}(H)} + \|w\|_{C(\bar{H})}.$$
(1.5)

Definition 1.1(maximum principle) We say that the maximum principle holds for the operator L in D if

$$\begin{cases} Lw \ge 0 & \text{in } D\\ w \le 0 & \text{on } \partial_p D \end{cases}$$
(1.6)

implies $w \leq 0$ in D for $w \in W^{2,1}_{n+1,loc}(D) \cap C(\overline{D})$ bounded above.

We will assume $c(x,t) \leq 0$, but in the case of domains which are bounded from below in the time-direction, it is sufficient for the maximum principle where c(x,t) is bounded above, due to the fact that for a subsolution w(x,t) of Lw = 0, the function $v(x,t) = e^{-\lambda t}w(x,t)$ is a subsolution of $Lv - \lambda v = 0$. Moreover we observe that already in the elliptic case the maximum principle may fail to hold when w is not bounded above.

It is well known that the maximum principle holds in the upper half-space $\mathbb{R}^n \times \mathbb{R}_+$. This is based on the strong maximum principle due to Nirenberg [5], which asserts that, if the maximum $M = \sup_D w^+$ of a subsolution w of Lw = 0 in a domain D of \mathbb{R}^{n+1} achieved in a point $(\bar{x}, \bar{t}) \in D$, then w = M in every point $(x, t) \in D$, which can be joined with (\bar{x}, \bar{t}) through a path in D consisting only of horizontal segments and upwards vertical segments. The maximum principle follows by finding suitable barrier functions which allow to locate M at a finite point (see [6]). This seems not possible in general in the case of a domain which is not bounded from below in the time-direction. On the other part from the elliptic theory we deduce that the maximum principle is violated in the exterior domain outside the cylinder $B_1 \times \mathbb{R}$, over the unit ball B_1 in \mathbb{R}^3 centered at the origin, by the stationary solution w(x,t) = 1 - 1/|x|.

Our purpose is to show that however in a large class of domains D, which are not bounded from below in the time-direction, the maximum principle continues to hold. We will need, in a sense that will be clear below, "enough parabolic boundary" near all the points of D. The idea is to adapt the device of Cabré [3] for the parabolic