THE GLOBAL WELLPOSEDNESS AND SCATTERING OF THE GENERALIZED DAVEY-STEWARTSON EQUATION

Shen Caixia

(The Graduate School of China Academy of Engineering Physics, P. O. Box 2101, Beijing, 100088, China, E-mail: shencaixia@163.net) (Received Sep. 9, 2003)

Abstract We discuss the solution of the Cauchy problem of the generalized Davey-Stewartson equation. When the initial value is small enough, we obtain the global wellposedness of the solution and scattering.

Key Words The generalized Davey-Stewartson equation; the Cauchy problem; scattering.

2000 MR Subject Classification 35L70, 35B10, 37L10. Chinese Library Classification 0175.29.

1. Introduction

In this paper we will prove the global wellposedess and scattering result for the Cauchy problem of the generalized Davey-Stewartson equation when the datum is small enough. In [1], Wang Baoxiang, Guo Boling studied the generalized Davey-Stewartson equation,

$$iu_t + Au = \lambda_1 |u|^{p_1} u + \lambda_2 |u|^{p_2} u + \mu E(|u|^2) u, \tag{1.1}$$

where $u(t,x)(x=(x_1,x_2,...,x_n))$ is a complex function of $(t,x) \in R_+ \times R^n$. $\lambda_1,\lambda_2,\mu \in C$,

$$A := \sum_{1 \le i, j \le n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j},$$

$$E(\varphi) = \mathcal{F}^{-1} \left[\frac{\xi_1^2}{\sum_{1 \le i, j \le n} b_{ij} \xi_i \xi_j} \right] \mathcal{F} \varphi. \tag{1.2}$$

In the above, $\mathcal{F}(\mathcal{F}^{-1})$ denotes Fourier (converse) transform, $(a_{ij}), (b_{ij})$ are real invertible matrices satisfying

$$\left| \sum_{1 \le i,j \le n} b_{ij} \xi_i \xi_j \right| \ge C|\xi|^2, \forall \xi \in \mathbb{R}^n, \tag{1.3}$$

In this paper, we will study the initial value problem of the generalized Davey-Stewartson equation with the form :

$$iu_t + Au = \lambda |u|^{2q-2}u + \mu E(|u|^q)|u|^{q-2}u, \tag{1.4}$$

90 Shen Caixia Vol.17

$$u(0,x) = u_0(x), (1.5)$$

where $\lambda, \mu \in \mathcal{C}$, $A, E(\varphi)$ are defined in (1.2), respectively.

For any $4/n \le p < \infty$ and $r \in [2, \infty)$, we denote:

$$s(p) = \frac{n}{2} - \frac{2}{p}, \quad \frac{2}{\gamma(r)} = n(\frac{1}{2} - \frac{1}{r}), \quad r(p) = \frac{2n(2+p)}{n(2+p)-4},$$
 (1.6)

$$\alpha(n) = \begin{cases} \frac{2n}{n-2}, & n > 2\\ \infty, & n = 2 \end{cases}$$
 (1.7)

Our main result is as follows:

Theorem 1.1 Suppose $n \ge 2, 2 \le q < \infty, s(2q-2) = \frac{n}{2} - \frac{1}{q-1}$, and there exists $\delta_1 > 0$, such that, when $\|u_0\|_{H^{2q-2}} \le \delta_1$, (1.4),(1.5) has a unique solution satisfying

$$u \in C\left(0, \infty; H^{s(2q-2)}\right) \bigcap \bigcap_{2 < r < \alpha(n)} L^{\gamma(r)}\left(0, \infty; B_{r,2}^{s(2q-2)}\right).$$

Theorem 1.2 Suppose $n \ge 2, 2 \le q < \infty, s(2q-2) = \frac{n}{2} - \frac{1}{q-1}$, and there exists $\delta_1 > 0$ such that, when $||u_0||_{H^{2q-2}} \le \delta_1$, the solution of (1.4)(1.5) has scattering.

The proof of Theorem 1.2 is omitted.

Let S(t) be a semi-group generated by $i\frac{\partial}{\partial t}+A$. From [2] we can obtain the time-space Strichartz estimate:

$$||S(t)f||_{L^{\gamma(r)}(-\infty,\infty;\dot{B}_{r}^{s},2)} \le ||f||_{\dot{H}^{s}},$$

$$\tag{1.8}$$

$$\left\| \int_{0}^{t} S(t-\tau)f(\tau)d\tau \right\|_{L^{\gamma(r)}(0,T;\dot{B}_{r,2}^{s})} \le C\|f\|_{L^{\gamma(q)'}(0,T;\dot{B}_{q',2}^{s})},\tag{1.9}$$

where $q, r \in [2, \alpha(n)), 0 < T \le \infty$, and C is independent of T. If $f = \sum_{i=1}^{I} f_i$, $r, q_i \in [2, \alpha(n)), i = 1, 2, ..., I$, from (1.9) we get:

$$\left\| \int_{0}^{t} S(t-\tau)f(\tau)d\tau \right\|_{L^{\gamma(r)}(0,T;\dot{B}_{p,2}^{s})} \le C \sum_{i=1}^{I} \|f_{i}\|_{L^{\gamma(q_{i})'}(0,T;\dot{B}_{q'_{i},2}^{s})}.$$
 (1.10)

2. The Nonlinear Estimates

Lemma 2.1([1]) $\forall 1 , we get:$

$$\rho(\xi) =: \frac{\xi_1^2}{\sum_{1 \le i, j \le n} b_{ij} \xi_i \xi_j} \in \mathcal{M}_p.$$

where (b_{ij}) satisfies (1.3), \mathcal{M}_p denotes multiplier space.