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Abstract In this paper, we study the non-negative solutions to a degenerate
parabolic system with nonlinear boundary conditions in the multi-dimensional case.
By the upper and lower solutions method, we give the conditions on the existence and
non-existence of global solutions.
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1. Introduction and Main Results

Let constants m > 1 and p, ¢ > 0, and let RY = {(z1, 2/) |21 > 0,2’ € RN"!}. In
this paper we study the non-negative solutions to the following degenerate parabolic
system with nonlinear boundary conditions in half space

uy = Au™, v = Av™, mERf, t>0,

ou™ o™ (1)
=P, ——— =, =0, t>0.
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and initial conditions
U(IE,O) = UO(:E)a ’U(l‘,()) = UO(:‘L‘)v VIS RJI? (2)

where the initial data ug(z) and vo(z) are non-negative C'! functions and satisfy the
compatibility conditions
ougt oy’
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Moreover, they are compactly supported in RY, and if they are nontrivial, then we
assume that they satisfy uo(0) > 0, vo(0) > 0.

Since the pioneering work of Fujita in the 1960’s, much work on the global existence
and blow-up to the nonlinear parabolic problems has been done, see [1-5] and the
references therein. The main aim of this paper is to discuss the global existence and
finite time blow-up of solution to the problem (?7?) by constructing self-similar upper
solution that exists globally and lower solution that blows up in finite time. This
method has been used by many authors, see [?, 7, 7, 7, ?] and the references therein.

For the scalar equation

ur = Au", xERf, t>0,
am
—aLxl:up, x1:0, t>07 (3)

U(IL‘,O) = u0($)7 T € Rfa

where ug(z) has the similar properties to the functions of (??). Huang et al [?] obtained
(i) If p < po = (m+1)/2, then all the solutions of the problem (??) are global;
(i) If po < p < pc = m+ 1/N, then all the nontrivial solutions of the problem (?7)
blow up in finite time;
(iii) If p > pe, then the solution of the problem (??) exists globally for the small
initial data wug, while blows up in finite time for the large initial data wug.
In the paper [?], Quiros and Rossi studied the Fujita type curves of the following
problem on the half-line

up = (U")yy, V= (V")yy, y>0, t>0,
—(u™)y(0,t) = vP(0,1), t>0, (4)
—(v")y(0,2) = u?(0,1), t >0,

with m, n > 1 and p, ¢ > 0.

Definition 1 A pair of functions (u,v) is called an upper solution (lower solution)
of (27?) if it satisfies

ug > (<) AU, v > (<) Au™ zreRY, t>0,
ou™ o™

—— > ()P > (<) u? =0 t .
r (<) oP, ~ ey 2 (_)u 1 , >0

Proposition 1 Let (u,v) and (u,v) be the upper and lower solutions of (?7) re-
spectively. If there exists a number tg > 0 such that

u(z,to) < ulx,to), vz, to) <v(z,ty), =€ Rf,
u(0,t0) < w(0,t0), v(0,t0) < v(0,20),

then
y(x,t) < ﬂ($,t>, 1}(1',15) < ’L_)(iL‘,t),

as long as both pairs of functions exist.



