
J. Partial Diff. Eqs. 17(2004), 49–56
c©International Academic Publishers Vol.17, No.1

OBSTACLE PROBLEMS FOR SCALAR GINZBURG-LANDAU
EQUATIONS*

Ma Li and Su Ning
(Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.)

( E-mail: lma@math.tsinghua.edu.cn; nsu@math.tsinghua.edu.cn)
(Received May 7, 2003)

Abstract In this note, we establish some estimates of solutions of the scalar
Ginzburg-Landau equation and other nonlinear Laplacian equation ∆u = f(x, u). This
will give an estimate of the Hausdorff dimension for the free boundary of the obstacle
problem.
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1. Introduction

Recently there are many interesting results appeared in the study of mathemat-
ical theory of super-conductivity. There people considered Dirichlet and Neumann
boundary problems. There are a lot of such articles related to bifurcation and stability
properties about solutions. People also like to find multiple solutions for complex valued
Ginzburg-Landau equations. One interesting problem is the obstacle problem for the
scalar Ginzburg-Landau equation. However, the free boundary problems, in particular,
obstacle problems, are seldom considered in this theory. Such problem is nature since
the Ginzburg-Landau equation has a closed relation with the minimal surface theory.
The Obstacle problems for minimal surfaces or for constant mean curvature surfaces
have attracted a lot of people. As is well-known, the free boundary problems are very
important in science and technology, one may see the article of A. Friedman [1] for
more exposition. One such problem for linear elliptic partial differential equations is
the obstacle problem, which is considered by many famous mathematicians. In the
linear elliptic problem case, L.Caffarelli [2] proved a very beautiful result. In fact, he
can show that the solution is C1,1 and the free boundary is an n-1 dimensional sub-
manifold. His argument is very delicate. As he pointed out, his method can be used to
treat some nonlinear problems. Some of his results and arguments have been extended
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to p-Laplacian problems by K.Lee and H.Shahgholian [3]. One natural question is if a
similar result is true for the obstacle problem in the super-conductivity theory.

In this paper, we study the obstacle problem for the scalar Ginzburg-Landau model.
Let D ⊂ Rn be a bounded smooth domain. We are now given a (smooth) bounded
function f(x) on ∂D ( we assume that f has an extension f ∈ C2,µ(D)), and a (smooth)
function φ(x) ∈ C2,µ(D) with ϕ(x) < f(x) for every x ∈ ∂D. We study the partial
differential equation (GL)o:

∆u + λu(1− u2) = 0 in {u > ϕ},

where λ > 0 is a (large) constant.
Let M = |f |L∞ . Let u0 = inf{−1,−M} and u1 = sup{1,M}. It is clear that u0 is

a sub-solution of (GL)o, and u1 is a super-solution of (GL)o.
We can get a solution by the direct method. Define K to be the closed convex set

K := {u ∈ H1;u0 ≤ u ≤ u1, u|∂D = f, u ≥ ϕ}

Clearly, since we can extend f on all D such that f ∈ K, K is closed, non-empty convex
subset of H1.

Set
J(u) =

∫
D
|du|2 +

λ

4

∫
D

(u2 − 1)2

on K. Then it is easy to see that the infimum is achieved on K. In fact, the minimizer
u satisfies the Ginzburg-Landau type equation

∆u + λu(1− u2) = 0 in {u > ϕ},

where λ > 0 is a (large) constant. By using a simple comparison argument, it is easy
to see that the solution is unique. Let

Ω := {x;u(x) > ϕ(x)}

Then we meet the question about the regularity of the solution. It is easy to see that
since this u is in L∞, it is C1,α, α ∈ (0, 1), ( by Theorem 1 in [4]). Furthermore, by
adapting the argument in [2], we can show that u is in C1,1, and smooth away from the
free boundary S := {u = ϕ} (see the next section). So the key part is to understand
the regularity about the free boundary.

To understand the regularity of this minimizer near the free boundary, without loss
of generality, we need only to study the following model problem. In the unit ball of
Rn we consider a given function w with the following properties:

(a) w ≥ 0, w ∈ C1,1;

(b) ∆w = g(x) in the set Ω = {w > 0};


