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Abstract In this paper, our main aim is to study the existence and uniqueness of
the periodic solution of delayed Logistic equation and its asymptotic behavior. In case
the coefficients are periodic, we give some sufficient conditions for the existence and
uniqueness of periodic solution. Furthermore, we also study the effect of time-delay on
the solution.

Key Words Logistic equation; periodic; asymptotic behavior; time delay; unique-
ness.

2000 MR Subject Classification 35K57.
Chinese Library Classification O175.26, O174.29, O175.21.

1. Introduction

The delayed Logistic differential equation

Lu(t, x) = u(t, x) [a(t, x)− b(t, x)u(t, x)

−c(t, x)u(t− τ, x)] , (t, x) ∈ R+ × Ω, (1.1)

B[u](t, x) = 0, (t, x) ∈ R+ × ∂Ω, (1.2)

u(t, x) = φ(t, x), (t, x) ∈ [−τ, 0]× Ω, (1.3)

is given as a model of single-species population growth. In [1] the authors have studied
the case that the coefficients vary periodically and the time delay is given as τ = mT ,
where m is a positive integer and T is the period. In [2] the coefficients only associated
with x has been studied, which implies the steady-state solution is globally asymptotic
stable for every given τ > 0. In [3-5] the systems of parabolic equations with delays are
studied, which imply the quasi-solutions for single equation may be obtained. In this
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paper we study the existence and uniqueness of the periodic solution of the problem
(1.1)(1.2) and the asymptotic behavior of the problem (1.1)-(1.3).

We give the hypotheses below:
(H1) Ω is a bounded domain in Rn with smooth boundary ∂Ω, and L is an operator
defined as L = ∂/∂t − 4 , where 4 denotes the Laplace operator. The boundary
condition is given by

B[u] = u or B[u] =
∂u

∂n
+ γ(x)u.

γ(x) ∈ C1+α(∂Ω) and γ(x) ≥ 0 on ∂Ω, and ∂/∂n denotes the outward normal deriva-
tive on ∂Ω, R+ = (0,∞).

(H2) The coefficients a(t, x), b(t, x) and c(t, x) are T -periodic in t and Hölder con-
tinuous on [0, T ]×Ω with a(t, x) > 0; b(t, x) > 0; c(t, x) ≥ 0. We denote a1, b1, c1 and
a2, b2, c2 to be the minimum and maximum values of a, b, c on [0, T ]× Ω with c2 > 0
respectively.

(H3) The time delay τ is a positive constant. φ ∈ C0,1([−τ, 0] × Ω) is a nonnegative
bounded function which satisfies the compatibility condition, i.e. B[φ(0, x)] = 0.

Denote C1, 2(R+ × Ω) to be the set of functions which are once continuously dif-
ferentiable in t ∈ R+ and twice continuously differentiable in x ∈ Ω. Similar notations
are used for other function spaces and other domains.

Lemma 1.1 If there exists a pair of smooth functions u, u ∈ C1, 2(R+×Ω)
⋂

C([−τ,

∞) × Ω) (called coupled upper and lower solutions) such that u ≥ u on [−τ,∞) × Ω,
and they satisfy the following inequalities

Lu(t, x) ≥ u(t, x)[a(t, x)− b(t, x)u(t, x)− c(t, x)u(t− τ, x)],

Lu(t, x) ≤ u(t, x)[a(t, x)− b(t, x)u(t, x)− c(t, x)u(t− τ, x)], (1.4)

(t, x) ∈ R+ × Ω,

B[u](t, x) ≥ 0 ≥ B[u](t, x), (t, x) ∈ R+ × ∂Ω, (1.5)

u(t, x) ≥ φ(t, x) ≥ u(t, x), (t, x) ∈ [−τ, 0]× Ω, (1.6)

then the initial-boundary value problem (1.1)-(1.3) has a unique solution u ∈ C1, 2(R+×
Ω)

⋂
C([−τ, ∞)× Ω) with u ≥ u ≥ u on [−τ,∞)× Ω.

In the case u, u satisfy (1.4)(1.5) with u ≥ u on R+ × Ω, we also call u, u a pair
of upper and lower solutions of the problem (1.1)(1.2). For the proof of Lemma 1.1
we can refer to [6, 7 ]. As there always exists a positive number α large enough such
that φ(t, x) ≤ α on [−τ, 0]× Ω, it is easy to check that α and 0 is a pair of upper and
lower solutions of the problem (1.1)–(1.3), then from Lemma 1.1 we can get a unique


