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Abstract In this note we shall give a simple proof of a result in [1] which gives a
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1. Introduction and the Main Results

In this note we are concerned with the following Cauchy problem in Rn × (0, T )

∂tv −4v + (v · ∇)v +∇P = 0, (1.1)

div v = 0, (1.2)

v(0) = v0(x), (1.3)

where v(t) = v(t, x) = (v1(t, x), v2(t, x), · · · , vn(t, x)), is the velocity field, P is the
pressure.

Definition 1.1 A vector field v ∈ L∞((0, T );L2(Rn))∩L2((0, T ); Ḣ1(Rn)) is called
the Leray–Hopf weak solution if

∫ T

0

∫
Rn

[v · ϕt + (v · ∇)ϕ · v + v · 4ϕ]dxdt = 0,

for ∀ϕ ∈ [C∞0 (Rn × (0, T )]n , with div ϕ = 0, (1.4)
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and
div v = 0, (1.5)

in the distributional sense.
For v0 ∈ L2(Rn) with div v0 = 0, the global existence of weak solution was estab-

lished by Leray and Hopf in [2] and [3]. It is still unknown whether the Leray–Hopf
weak solution to the Navier–Stokes equations is unique. As for the strong solution or
Lq(I;Lp)–solutions, it is well known that for v0 ∈ H1(Rn) (n ≤ 4) with div v0 = 0
or v0 ∈ Lr(Rn) (r ≥ n) with div v0 = 0 in distributional sense, then there exists a
local unique strong solution v ∈ C([0, T );H1(Rn)) (n ≤ 4) or Lq(I;Lp)–solution for any
space dimensions, where the maximal time existence T∗ depends on the initial data
‖v0 : H1(Rn)‖ (n ≤ 4) or ‖v0‖r in the subcritical case r > n and depends on v0 itself
in the critical case r = n, for details see [ 4–13] and [14]. As an immediate conse-
quence of regularity of analytic semigroup which is generated by the Stokes operator,
one easily sees that the strong solution (n ≤ 4) and the Lq(I;Lp)–solution belong to
the C((0, T ); C∞(Rn)), see [9] and [13]. The global in time existence of strong solution
or Lq(I;Lp)–solution is an outstanding open problem. Many authors have deduced the
sufficient conditions under which the Leray–Hopf weak solution agrees with the smooth
solution. In this direction, there is a classical result due to Serrin [12], which states that
if a Leray–Hopf weak solution belongs to Lq(I;Lp(R3)), 2

q + 3
p < 1 and q < ∞, then v

becomes the smooth solution. Later, Fabes, Jone and Riviere in [4] extend the above
criterion to the case 2

q + 3
p = 1. The case q = ∞, p = 3 in Serrin’s conditions, regularity

and uniqueness of the solution to the Navier–Stokes equations was established in [13].
For general space dimension case (2

q + n
p ≤ 1) has been studied by many authors, see

[8,9] and [13] and references therein.
Recently, Beirão da Veiga [1] obtained a sufficient condition for regularity using the

vorticity w = curl v, rather than the velocity v, his results can be stated as follows:
Theorem 1.1 Let v0 ∈ L2(R3) with div v0=0 and w0 = curl v0 ∈ L2(R3). If

the Leray–Hopf weak solution v satisfies w = curl v ∈ Lq(I;Lp(R3)) with 2
q + 3

p ≤ 2,
1 < q < ∞, then v becomes the classical solution on I = (0, T ).

In [15] Dongho Chae & Hi–Jun Choe extended the results of [1] as:
Theorem 1.2 Let v0 ∈ L2(R3) with div v0=0 and ω0 = curl v0 ∈ L2(R3). Let v

be the Leray–Hopf weak solution to (1.1), w = curl v. Assume that ω̃ ∈ Lq(I;Lp(R3))
with 2

q + 3
p ≤ 2, 1 < q < ∞, where

ω̃ = ω1e1 + ω2e2, e1 = (1, 0, 0), e2 = (0, 1, 0). (1.6)

Then v becomes the classical solution on I = (0, T ).
In (1.6) ω1e1 or ω2e2 can be replaced by ω3e3, which means that the regularity of

the solution of (1.1) depends on two components of the vorticity field.
In this note, we shall give a simple proof of Theorem 1.1 and its generalization in

higher dimensions.


