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Abstract In this paper, the existence of homoclinic orbits, for a perturbed cubic-
quintic nonlinear Schrödinger equation with even periodic boundary conditions, under
the generalized parameters conditions is established. More specifically, we combine
geometric singular perturbation theory with Melnikov analysis and integrable theory to
prove the persistence of homoclinic orbits.
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1. Introduction

In recent years, there have been extensive studies on the existence of homoclinic
orbits for near integrable dissipative PDEs, which are closely related to chaos. In this
work, we consider a perturbed cubic-quintic nonlinear Schrödinger equation (CQS)

iqt = qxx + 2(q q −ω2)q + iε(D̂q − Γ−m |q|4 q − n |q|2 q), (1.1)

where q is 2π periodic and even in x, D̂ is a bounded dissipative operator and is assumed
to take the form

D̂q = −αq + βB̂q (1.2)

for positive constants α and β. Here B̂ is a Fourier truncation of ∂xx, i. e.

B̂ cos (kx) =

{
−k2 cos (kx) , k < K,

0 , k ≥ K,
(1.3)

the constants ω, m, and n are assumed to satisfy ω ∈ (1
2 , 1),m ≥ 0, and n ≥ 0; and

ε > 0 is a small perturbation parameter. We shall prove that, for sufficiently small ε > 0
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and appropriate parameters, there exists a solution of the equation (1.1) homoclinic to
an equilibrium.

When m = n = 0, the perturbed nonlinear Schrödinger equation (NLS)

iqt = qxx + 2(q q −ω2)q + iε(D̂q − Γ) (1.4)

is studied numerically, one finds solutions that, at large time t À 1, consist of very
regular spatial patterns that oscillate irregularly, maybe even chaotically, in time t.
Details can be found in [1]. This chaostic behavior is believed to be closely related
to persistent homoclinic structures from the original ‘figure 8’ structures of integrable
systems, composed of whiskered tori and their homoclinic connections. Thus, the proof
of the existence of homoclinic orbits for the perturbed NLS is naturally the next step.

The analysis of the existence of homoclinic orbits for the perturbed NLS was initially
carried out for finite dimensional versions, first, a four-dimensional Fourier truncation,
in [2–5], and then a finite (2N + 2)−dimensional finite difference discretization, in [6]
and [7]. In[8], the existence of homoclinic orbits was proved for the equation (1.4) at
Γ = 1. When the bounded operator B̂ is replaced by an unbounded operator ∂xx, [9]
proved the existence of homoclinic orbits for the perturbed NLS equation.

When ε = 0,the unperturbed CQS is a completely integrable NLS equation. It has
a temporally periodic solution

q (t) = r exp{−i
[
2

(
r2 − ω2

)
t− θ

]
},

where r 6= ω and θ denotes real constants.
Using Bäcklund-Darboux transformation from soliton mathematics, one can obtain

an exact solutions of NLS

q±h (t) =
{

cos 2p cosh τ − i sin 2p sinh τ ± sin p cos x

cosh τ ∓ sin p cos x

}
q, (1.5)

where τ = σr (t + t0) , σr =
√

4r2 − 1, and p = tan−1 σr.

It is easy to see that q±h (t) are homoclinic to q (t) with a phase shift −4p, when
r = ω, Cω = {q | qx = 0, |q| = ω} is a circle of fixed points and q±h (t) are actually
heteroclinic orbits. We shall start with these homoclinic and heteroclinic orbits to
construct homoclinic orbits for the perturbed CQS. More specifically, when ε > 0, for
the equation (1.1) , the circle Cω of fixed points breaks and a saddle Q appears in a
neighborhood of Cω. We shall prove that, for sufficiently small ε > 0, there exists a
solution homoclinic to Q.

Note that the equation (1.1) is in the form of the important complex Ginzburg-
Landau equations. Recently, one also studied Ginzburg-Landau equations as pertur-
bation of NLS which preserve phase symmetry. In a series [10–12], they discussed
the persistence of special solutions such as rotating waves, travelling waves, and quasi-
periodic solutions through Melnikov approach. Some necessary conditions were derived
by utilizing some invariants of NLS.


