Nonlinear Parabolic Equations with Singular Coefficient with Respect to the Unknown and with Diffuse Measure Data

ZAKI Khaled¹, REDWANE Hicham^{1,2,*}

 ¹ Faculté des Sciences et Techniques Université Hassan 1, B.P. 764. Settat. Morocco.
² Faculté des Sciences Juridiques, Économiques et Sociales. Université Hassan 1, B.P. 764. Settat. Morocco.

Received 26 March 2018; Accepted 21 December 2019

Abstract. An existence and uniqueness result of a renormalized solution for a class of doubly nonlinear parabolic equations with singular coefficient with respect to the unknown and with diffuse measure data is established. A comparison result is also proved for such solutions.

AMS Subject Classifications: 47A15, 46A32, 47D20

Chinese Library Classifications: O175.29

Key Words: Nonlinear parabolic equations; renormalized solutions; diffuse measure.

1 Introduction

In the present paper we establish an existence and uniqueness result of a renormalized solution for a class of nonlinear parabolic equations of the type

$$\begin{cases} \frac{\partial b(u)}{\partial t} - \operatorname{div} \left(\mathcal{A}(x, u) \nabla u \right) + \lambda \ u = \mu & \text{in } Q, \\ b(u(t=0)) = b(u_0) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \times (0, T). \end{cases}$$
(1.1)

In Problem (1.1) the framework is the following: Ω is a bounded domain of \mathbb{R}^N ($N \ge 1$), T is a positive real number and $Q = \Omega \times (0,T)$ with the lateral boundary $\partial \Omega \times (0,T)$ and $u_0 \in L^1(\Omega)$, $u_0 \le m$ a.e. in Ω , where m is a positive real number. The function b is assumed

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* zakikhaled74@hotmail.com (K. Zaki), redwane_hicham@yahoo.fr (H. Redwane)

Nonlinear Parabolic Equations with Singular Coefficient

to be a C^1 -function defined on \mathbb{R} , such that which is strictly increasing. The Carathéodory function \mathcal{A} defined on $\Omega \times]-\infty, m[$, satisfies

$$\lim_{s\to m^-} \mathcal{A}(x,s) = +\infty \quad \text{for a.e. } x \in \Omega.$$

The first difficulty in solving this equation is defining the field $\mathcal{A}(x,u)\nabla u$ on the subset $\{(x,t); u(x,t) = m\}$ of Q, since, on this set, $\mathcal{A}(x,u) = +\infty$.

The second difficulty is represented here by the presence of the measure data μ and the nonlinear term b(u). To overcome these difficulties, we use in this paper the framework of renormalized solutions. A large number of papers was then devoted to the study of renormalized (or entropy) solution of parabolic problems with rough data under various assumptions and in different contexts: in addition to the references already mentioned see, [1–12].

The existence and uniqueness of a renormalized solution of (1.1) have been proved in [13] (see also [14]) in the stationary case where $\mathcal{A}(x,u) = d(u) + A(u)$ with $d(r) = (d_i(r))_{1 \le i \le N}$ is a diagonal matrix defined on an interval $] -\infty, m[$ such that there exists an index $p \in \{1, \dots, N\}$ such that $\lim_{r \to m^-} d_p(r) = +\infty$, where the matrix $A(r) \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}^{N \times N})$ and where $\mu \in L^2(\Omega)$ (see also [15, 16]).

In the stationary and evolution cases of $u_t - \operatorname{div}(A(x,t,u)\nabla u) = f$ in Q, where the matrix A(x,t,s) blows up (uniformly with respect to (x,t)) as $s \to m^-$ and where $f \in L^1(Q)$, the existence of renormalized solution has been proved in [2].

We call a finite measure μ diffuse if it does not charge sets of zero 2–*capacity* (see Section 2 for the definition) and $\mathcal{M}_0(Q)$ will denote the subspace of all diffuse measures in Q. According to a representation theorem for diffuse measures proved in [17], for every $\mu \in \mathcal{M}_0(Q)$, there exist $f \in L^1(Q)$, $g \in L^2(0,T;H_0^1(\Omega))$ and $\chi \in L^2(0,T;H^{-1}(\Omega))$ such that $\mu = f + \chi + g_t$ in $\mathcal{D}'(Q)$.

In the case of

$$u_t - \sum_{i=1}^N \frac{\partial}{\partial x_i} (d_i(u) \frac{\partial u}{\partial x_i}) = \mu,$$

where the coefficients $d_i(s)$ are continuous on an interval $]-\infty,m[$ such that there exists an index $p \in \{1, \dots, N\}$ such that $\lim_{r \to m^-} d_p(r) = +\infty$, the data $u_0 \in L^1(\Omega)$ such that $u_0 \leq m$, and $\mu \in \mathcal{M}_0(Q)$, the existence of renormalized solution has been proved in [18].

When *b* is assumed to satisfy $0 < b_0 \le b'(r) \le b_1$, $\forall r \in \mathbb{R}$ and $\mathcal{A}(x,u)\nabla u$ is replaced by $a(x,t,\nabla u)$, and $\mu \in \mathcal{M}_0(Q)$, the existence and uniqueness of renormalized solution have been established in [19].

In the case of

$$u_t - \operatorname{div}(a(t, x, u, \nabla u)) + \operatorname{div}(\Phi(u)) = f + \operatorname{div} g$$
 in Q ,

where Φ is a continuous function, $f \in L^1(Q)$ and $g \in (L^{p'}(Q))^N$ the existence of renormalized solution has been proved in [20].