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Abstract. In this paper we are concerned with a system of nonlinear integral equations
on the exterior domain under the suitable boundary conditions. Through the method
of moving planes in integral forms which has some innovative ideas we obtain that
the exterior domain is radial symmetry and a pair of positive solutions of the system
is radial symmetry and monotone non-decreasing. Consequently, we can obtain the
corresponding Liouville type theorem about the solutions.
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1 Introduction

Let Ω⊂Rn (n≥3) be a bounded connected domain with ∂Ω∈C1 and let Ω1=Rn\Ω. We
are concerned with the following system of nonlinear integral equations

u(x)=
∫

Ω1

1
|x−y|n−α

f (v(y))g(∇v(y))dy, in Ω1,

v(x)=
∫

Ω1

1
|x−y|n−β

f (u(y))g(∇u(y))dy, in Ω1,
(1.1)

∗Corresponding author. Email addresses: yin.r@ntu.edu.cn (R. Yin), zhangjihui@njnu.edu.cn (J. H.
Zhang), xudong-shang@163.com (X. D. Shang)

http://www.global-sci.org/jpde/ 191



192 R. Yin, J. H. Zhang and X. D. Shang/ J. Partial Diff. Eq., 32 (2019), pp. 191-206

under boundary conditions

u=0 and v=0, on ∂Ω, (1.2)

where 1< α, β<n and α+β<n for constants α, β, with respect to the functions f and g
we assume that

( f g1) f and g are both positive functions;

( f g2) f (u)g(∇u)(x) ∈ L1(Ω1)∩L
p

p−1 (Ω1)∩L
q

q−1 (Ω1), where 1 < p < min
{

n
n−α , n

n−β

}
,

1<q<min
{

n
n−α+1 , n

n−β+1

}
, u(x)∈Lr(Ω1)∩Ls(Ω1), r> n

n−α and s> n
n−β ;

( f g3) f (u) and g(w) are continuous in u and w, respectively;

( f g4) f
′
(u) is nonnegative and f

′
(u)(x) ∈ Lt(Ω1)∩Lt1(Ω1), where t = nrs

ns+αrs−nr > 1,
t1=

nrs
nr+βrs−ns >1, u(x)∈Lr(Ω1)∩Ls(Ω1), r> n

n−α and s> n
n−β ;

( f g5) g(w(x1,x2,. . .,xn)) is non-decreasing in |xi|, where i∈ [1,n] is a positive integer.

The system (1.1) implies the following system{
(−∆)

α
2 u= f (v)g(∇v), in Ω1,

(−∆)
β
2 v= f (u)g(∇u), in Ω1.

(1.3)

Let u= v and α= β, the system (1.3) can be rewritten as the following nonlinear partial
differential equation (PDE) on exterior domain

(−∆)
α
2 u= f (u)g(∇u), in Ω1.

Let α=2, we can get the following classical Laplacian equation

−∆u= f (u)g(∇u). (1.4)

In [1], Serrin introduced that the equation −∆u= f (u,|∇u|) which is the general form
of (1.4) has the strong significance in physics. For instance, when we consider a viscous
incompressible fluid moving in straight parallel streamlines through a straight pipe of
given cross sectional form Ω, we can obtain it. Serrin studied the following problem

−∆u= f (u,|∇u|), in Ω,
u=0, on ∂Ω,
∂u
∂γ =C1≤0, on ∂Ω,

(1.5)

where Ω⊂Rn is a bounded open connected domain. Serrin obtained that Ω is a ball and
the positive solution of (1.5) is radially symmetric.


