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Abstract. The question of a mathematical representation and theoretical overcoming
by optimised therapeutic strategies of drug-induced drug resistance in cancer cell pop-
ulations is tackled here from the point of view of adaptive dynamics and optimal pop-
ulation growth control, using integro-differential equations. Combined impacts of ex-
ternal continuous-time functions, standing for drug actions, on targets in a plastic (i.e.,
able to quickly change its phenotype in deadly environmental conditions) cell popu-
lation model, represent a therapeutical control to be optimised. A justification for the
introduction of the adaptive dynamics setting, retaining such plasticity for cancer cell
populations, is firstly presented in light of the evolution of multicellular species and
disruptions in multicellularity coherence that are characteristics of cancer and of its
progression. Finally, open general questions on cancer and evolution in the Darwinian
sense are listed, that may open innovative tracks in modelling and treating cancer by
circumventing drug resistance. This study sums up results that were presented at the
international NUMACH workshop, Mulhouse, France, in July 2018.
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1 Introduction

This study presents an evolutionary viewpoint on cancer, seen as the 2 time scales of
(large-time) evolution in the genomes and of (short-time) evolution in the epigenetic
landscape of a constituted genome, which led to the proposal of mathematical models e-
laborated within the Jacques-Louis Lions laboratory of Sorbonne Université, Paris. These

∗Corresponding author. Email address: jean.clairambault@inria.fr (J. Clairambault)



J. Clairambault / J. Math. Study, 52 (2019), pp. 470-496 471

views, inspired by works of Lineweaver, Davies and Vincent (cancer as anatomically lo-
cated backward evolution in multicellular organisms, aka atavistic theory of cancer) and
of Sui Huang and collaborators (revisited Waddington epigenetic landscape), respective-
ly, may serve as guidelines to propose a global conception of cancer, including towards
possible innovating therapeutic strategies.

Drug-induced drug resistance in cancer, the biological and medical question we are
tackling from a theoretical point of view, may be due to biological mechanisms of differ-
ent natures, mere local regulation, epigenetic modifications (reversible, nevertheless her-
itable) or genetic mutations (irreversible), according to the extent to which the genome
of the cells in the population is affected. In this respect, the modelling framework of
adaptive dynamics presented here is likely to biologically correspond to epigenetic mod-
ifications, although eventual induction of emergent resistant cell clones due to mutations
under drug pressure is not to be excluded. From the biologist’s point of view, we study
phenotypically heterogeneous, but genetically homogeneous, cancer cell populations un-
der stress by drugs.

The built-in targets for theoretical therapeutic control present in the phenotype-
structured PDE models we advocate are not supposed to represent well-defined molec-
ular effects of the drugs in use, but rather functional effects, i.e., related to cell death
(cytotoxic drugs), or to proliferation in the sense of slowing down the cell division cycle
without killing cells (cytostatic drugs). I propose that cell life-threatening drugs (cyto-
toxics) induce by far more resistance in the highly plastic cancer cell populations than
drugs that only limit their growth (cytostatics), and that a rational combination of the
two classes of drugs - and possibly others, adding relevant targets to the model - may
be optimised to propose therapeutic control strategies to avoid the emergence of drug
resistance in tumours.

We address this optimal control problem in the context of two populations, healthy
and cancer, both endowed with phenotypes evolving under drug pressure acting as an
environmental constraint, and reciprocally inhibiting the proliferation of the other pop-
ulation in a non-local Lotka-Volterra model. Our objective is thus to minimise the prolif-
eration of a cancer cell population while limiting the emergence of drug resistance in it,
and taking into account the constraint of limiting toxicity to a population of healthy cells,
that are also targets of unwanted adverse effects of the cytotoxic drug.

To conclude, I present an informal list of open questions on cancer and its treatments
that may be considered as challenges to mathematicians (and others).

2 Biological background on evolution and cancer

2.1 Motivation from, and focus on, drug resistance in cancer

Intra-tumour heterogeneity with respect to drug resistance potential, modelling between-
cell phenotypic variability within cancer cell populations, is a convenient setting to rep-
resent continuous evolution towards drug resistance in tumours [6]. Going beyond the
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small scale of a human life, I will consider slow genetic mechanisms of ‘the great evolu-
tion’ that has designed multicellular organisms (see Figure 1), in the frame of which fast
reverse evolution on smaller time windows, at the scale of a human disease, may explain
transient or established drug resistance. The idea of cancer as a backwards evolution to-
wards unicellularity, although not new [2,23], has recently be popularised as the atavistic
theory of cancer, with many recent developments [4, 8, 10, 43, 44, 48].

A key concept to be added to reverse evolution, i.e., to the atavistic hypothesis, is the
high plasticity shown by cancer cells, due to epigenetic (much faster than genetic muta-
tions, and reversible) propension to reversal to a stem-like, de-differentiated (hence plas-
tic) status, resulting in fast adaptability of cancer cell populations, makes them amenable
to resist abrupt drug insult as response to extreme cellular stress [15, 16].

Such plasticity, itself reversible according to environmental pressure or relaxation, is
captured by mathematical models that incorporate between-cell heterogeneity by making
use of continuous phenotypic variables structuring the population [29, 30]. Such models
have the advantage of being compatible with optimal control methods for the theoret-
ical design of optimised therapeutic protocols involving combinations of cytotoxic and
cytostatic ( and later epigenetic?) treatments [39].

2.2 Drug resistance: a phenomenon common to various therapeutic situations

In therapeutic situations where an external pathogenic agent is proliferating at the ex-
pense of the resources of an organism: antibiotherapy, virology, parasitology, target pop-
ulations are able to develop drug resistance mechanisms (e.g., expression of β-lactamase
in bacteria exposed to amoxicillin). In cancer, there is no external pathogenic agent (even
though one may have favoured the disease) and the target cell populations share much
of their genome with the host healthy cell population, making overexpression of natural
defence phenomena easy (e.g., ABC transporters in cancer cells).

Drug resistance may account for unexpected failures in targeted therapies, as they
are meant to block a given intracellular (or intercellular) signalling pathway, very often
related to proliferation, that can be coped with by adaptable, plastic cancer cells [14].
Note that drug resistance (and resistance to radiotherapy) is one of the many forms of fast
resistance to cellular stress, possibly coded in ‘cold’, i.e., strongly preserved throughout
evolution, rather than in ‘hot’, i.e., mutation-prone, genes [50].

Overexpression of ABC transporters [18], of drug processing enzymes, decrease of
drug cellular influx, etc. [17] are relevant to describe molecular resistance mechanisms at
the single cell level. However, at the cell population level, representing drug resistance
by a continuously evolving abstract variable x standing for the expression of a phenotype
of resistance to a given cytotoxic drug is adapted to describe in a one-dimensional way
evolution from total sensitivity (x=0) towards total resistance (x=1), and such abstract
variable could be partly identified by measuring the expression of ABC transporters such
as P-glycoprotein (aka MDR1) [37].

Is such evolution towards drug resistance due to sheer Darwinian selection of the
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Figure 1: Schematic timeline of the evolution of life on Earth, emphasising emergence of multicellularity between
-1000 and -500 million years from now (taken from [6]).

fittest by mutations in differentiation at cell division or, at least partially, due to pheno-
type adaptation in individual cells at the epigenetic level of the chromatin? A unique
answer to this question does not result clearly from biological experiments, and indeed
observations exist, showing that non-Darwinian phenomena, sometimes elicited to be of
epigenetic nature, may explain such reversible evolution towards drug resistance in cancer
cell populations [41].

2.3 A possible evolutionary framework (long-term view): the atavistic
hypothesis of cancer

“Nothing in biology makes sense except in the light of evolution” [11]

“Cancer: more archeoplasm than neoplasm” [48]

The atavistic hypothesis of cancer [4,8,10,43,44,48] states that cancer is a coarse, prim-
itive state of multicellularity development that nevertheless involves all our genome. In
this way, cancer represents a step in the reversion of the evolution of multicellular organ-
isms towards (but not until) unicellular life.

A reasonable hypothesis, coming from the observation that cancer is a disease of the
control and coherence of multicellularity, is that the genes that have appeared in the pro-
cess of development to multicellularity are precisely those that are altered in cancer [10].
In the framework of cancer evolution in a single organism, in what order do these genes
come altered? Admitting that the building of multicellularity starts in assemblies of cells
by developing gene expression from 1) proliferation+apoptosis to 2) cell differentiation
+division of work, and to 3) epigenetic control of differentiation and proliferation, this
question is partially answered in [19] about acute myeloid leukaemia (AML) by phylo-
genetic studies on fresh blood samples from patients: it is likely to be, in the standard
scenario in which p53 is not mutated (case of most AMLs), the reverse order, i.e., firstly
mutation of an epigenetic control gene, then of a transcription factor corresponding to
differentiation, and, only finally in this phylogeny, of a gene controlling proliferation.

Identifying those genes is of high interest, as reconstituting the phylogeny of this
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‘multicellularity toolkit’ [12, 13, 52] should shed light on the robustness or fragility of
genes (in a given organism) that have been altered in cancer. According to the atavistic
hypothesis [10], cancer is a ‘backward evolution’ from a sophisticated form of multi-
cellularity (us), in which epigenetic processes control gene regulatory networks of tran-
scription factors: differentiation factors, p53, etc., that themselves physiologically control
the basis of cellular life: proliferation. Following this point of view, i.e., that building
multicellularity from coarse (proliferation) to fine (epigenetic control of differentiation)
mechanisms, it is clear indeed that attacking cancer on proliferation is precisely attacking
its most robust basis. It would be better to attack its weaknesses (e.g., absence of adaptive
immune response) [26].

Furthermore, we bear in our genomes many attempts of species evolution since bil-
lions of years; dead-end tracks (‘unused attractors’ in S. Huang’s and S. Kauffman’s ver-
sion of the Waddington landscape, cf. infra [21, 22]) have been normally barred by Dar-
winian selection (e.g., silenced by epigenetic enzymes, resulting in evolutionary barriers
in this landscape), but are still there, waiting to be triggered by the pressure of a changing
environment. In cancer, global regulations (such as coherence messages from a central
circadian clock) are lost, differentiation is out of control, so that, without regulation, lo-
cal proliferations overcome; sophisticated adaptive epigenetic mechanisms are present,
not controlling proliferation, but serving it (possibly recruited in the context of extreme
cellular stress by stochastic or systematic expression of so-called cold genes? [50]).

Primitive forms of cooperation between specialised cells in a locally organised multi-
cellular collection (tumour), with much plasticity among them, may be present, exhibit-
ing coherent intratumoral heterogeneity, and escaping external control [31, 36, 42]. Tu-
mours are thus Metazoa 1.0 [10]. The basic cancer cell, be it isolated or included in a
tumour is thus highly plastic (undifferentiated or able to easily dedifferentiate) and high-
ly capable of adaptation to a hostile environment, as were its ancestors in a remote past of
our planet (poor O2, acidic environment, high UV radiations,...) [10] and likely presently
even more.

2.4 Another evolutionary framework (life-term view): revisiting the
Waddington epigenetic landscape

“Nothing in evolution makes sense except in the light of systems biology” (S. Huang, 2012)

At the time scale of the development of a human life, for a given subject, the relevant
time evolution is the one of a coherent succession of differentiations from one primitive
cell towards a completely mature multicellular organism. This differentiation process,
consisting of epigenetic modifications (aka epimutations) within the same genome, is
metaphorically represented by the classic Waddington epigenetic landscape [49], illus-
trated on Figure 2, later revisited by Sui Huang [21, 22], illustrated on Figure 3.

When the coherence in the multicellular design of an individual is altered by blockade
of cell differentiation at a given stage and in a given organ, with maintained proliferation,
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Figure 2: The classic Waddington landscape (1957) for cell differentiation [49].

in one of what S. Huang calls unused attractors in the Waddington epigenetic landscape,
see Figure 3, then can locally begin cancer. Such defect in local differentiation control
may be due to mutations of epigenetic control genes (e.g., in the case of acute myeloid
leukaemia (AML), TET2, DNMT3A, leading in a process that may take years, from ab-
solute clinical and biological silence in early infancy, to the clinical manifestation of an
AML, in an elderly patient). It can also be due to the local action of external carcinogenic
agents, including anticancer drugs that destabilise the genome, or to random mutations
(less likely, and these can also result from prior epimutations [51]).

From the point of view of this metaphoric landscape, the plasticity of cancer cell pop-
ulations can be seen as plasticity of the landscape (somehow from a rigid plaster-like to
a smooth plasticine-like construction, erasing epigenetic barriers between valleys and (s-
ince the third dimension in the scenery represents differentiation potential of an initial
totipotent cell) thoroughly flattening the whole landscape, resulting in a more and more
poorly differentiated and incoherent multicellular ensemble of cells.

3 Cell population adaptive dynamics

3.1 First model with (epi)mutation kernel, healthy and cancer cell
population [29]

Triggered by the fact that drug-induced drug resistance remains one of the main pitfalls
and causes of death in the clinic of cancers, with the aim to later optimise drug delivery
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Figure 3: The Waddington landscape revisited by Sui Huang (2011, 2013) [21, 22].

strategies to circumvent it, we proposed a drug resistance phenotype-structured model in
which the phenotype x∈[0,1] (from 0, total sensitivity, to 1, total resistance) was present in
4 terms: the basic proliferation rate r, the basic (without drugs added) death rate d, a drug
sensitivity term µC, and an integral term representing small mutations or epimutations,
i.e., small changes in phenotype.

This first integro-differential model structured in a continuous trait x representing the
level of expression of a drug resistance phenotype (to a given drug), with variables repre-
senting the evolution of two cell populations, healthy and cancer, nH(x,t), nC(x,t) being
the densities of these cell populations (H=healthy, C=tumour) runs as

(Resistant cancer case)

∂

∂t
nC(x,t)=

[ growth︷ ︸︸ ︷
(1−θC) r(x)−

death︷︸︸︷
d(x)−

drugeffect︷ ︸︸ ︷
u(t)µC(x)

]
nC(x,t)

+θC

birthwithmutation︷ ︸︸ ︷∫
r(y)MσC(y,x)nC(y,t)dy,
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Figure 4: Resistant cancer cell population case. Left panel: starting from an arbitrary median phenotype x=0.5,
level sets of a drug-resistant population in the (t,x) (time and phenotype) plane. Right panel: asymptotic
distribution of this drug-resistant population according to the drug resistance phenotype x∈ [0,1]. [Resistant
cancer cell population case: illustration of Gause’s exclusion principle] here with θC=0,µC(·)>0,r′(·)<0,µ′C(·)<0
(costly drug-induced resistance), with u(t)=Cst [29].

where r(x)= basic reproduction rate, d(x)= basic death rate; we assume that

r(0)>d(0)>0, r′(·)<0, r(1)=0, d′(·)>0.

Here θH, θC (1 > θC >> θH ≥ 0) are the proportions of divisions with mutations;
µ[H,C](x) (with µ′C(·)<0) represents the phenotype-dependent response to cytotoxic drug,
with concentration u(t), designed to target cancer cells.

The assumptions r(·)>0, µC(·)>0, µ′C(·)<0 and r′(·)<0 (cost of resistance: the higher
is x, the lower is proliferation) represent the effect of drug resistance on the proliferation
and death terms, plus an evolutionary double bind on resistant cancer cell populations,
i.e., a trade-off between growing (thus getting exposed) and keeping still (thus surviv-
ing).

Here u(t) denotes the instantaneous dose (concentration) of chemotherapy, only en-
vironmental pressure considered in this model. We assume that its effect is cytotoxic, i.e.,
on the death term only.

We then have the

Theorem 3.1. ([29]) (Resistant cell population case) There is monomorphic evolution of the cell
population towards drug-induced drug resistance (illustrated on Figure 4).

In the same way, we represent the sensitive (or healthy) population case (same notations):

(Sensitive cancer - or healthy - case)
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Figure 5: Healthy (or sensitive) cell population case. Left panel: starting from an arbitrary median phenotype
x=0.5, level sets of a drug-sensitive population in the (t,x) plane (time in abscissae and phenotype in ordinates).
Right panel: asymptotic distribution of this population according to the drug resistance phenotype x∈ [0,1].
[Sensitive (or healthy) cell population case: again, illustration of Gause’s exclusion principle] here with θH =0
(no mutations) and µH =0 (no drug-induced resistance), with u(t)=Cst [29].

∂

∂t
nH(x,t)=

[growthwithhomeostasis︷ ︸︸ ︷
1−θH(

1+ρ(t)
)β

r(x) −
death︷︸︸︷
d(x)−

drugeffect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x,t)

+
θH(

1+ρ(t)
)β

birthwithmutation︷ ︸︸ ︷∫
r(y)MσH (y,x)nH(y,t)dy,

where the total population is defined as ρ(t)=ρH(t)+ρC(t), in which

ρH(t)=
∫ ∞

x=0
nH(x,t)dx, ρC(t)=

∫ ∞

x=0
nC(x,t)dx.

(β>0 imposes healthy tissue homeostasis).

We then have the

Theorem 3.2. ([29]) (Sensitive cell population case) There is monomorphic evolution of the cell
population towards drug sensitivity (illustrated on Figure 5).

However, whatever the qualities of this model, and its amenability to be analysed
mathematically, we found out that the integral term resulted in a negligible part to the
evolution of the trait in the population, and that almost all was due to the sensitivity
term µC in the resistant cancer case. We thus reverted to another form of model, still
nonlocal, but of the more classical Lotka-Volterra form, in which nonlocality is located in
the logistic term, that represents limitation of growth by competition of every cell with
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all the others in the population, e.g., for space and nutriments. Note that an important
characteristic of these integro-differential models, from a biological point of view, is that
their evolution is totally reversible, i.e., if the environmental pressure represented by the
drug infusion is withdrawn, then the model reverts to its drug-free status, and this is
observed indeed in phenomena of acute drug resistance in cancer cell populations [41].

3.2 Simple phenotype-structured population dynamics

In the most general case, we aim at the description of the evolution of a population in
time t and in relevant phenotype x, where the ‘structure variable’ x is a trait chosen as
bearing the biological variability at stake, e.g. here (but many other instances may exist,
such as cell size, age in cell division cycle, fecundity, viability, motility, etc., depending
on the context), a resistance trait.

The variable at stake, n(t,x), represents a population density of individuals bearing
trait x at time t. We investigate

(1) the evolution in numbers of individuals constituting the population

t 7→ρ(t)=
∫ 1

0
n(t,x)dx (if, e.g., x∈ [0,1]),

(2) the asymptotic distribution of the trait in the population

x 7→ lim
t→+∞

n(t,x)
ρ(t)

.

In the case of cancer cell populations:

(1) allows to study tumour growth;

(2) allows to study the evolution and asymptotic distribution of the trait.

Note that space is not necessarily a relevant structure variable when studying drug
control.

We then propose a nonlocal (it is the logistic term which is nonlocal) Lotka-Volterra
model: The variable n(t,x) being the density of cells of trait phenotype x∈ [0,1] at time t

∂n
∂t

(t,x)=
(
r(x)−d(x)ρ(t)

)
n(t,x),

with

ρ(t) :=
∫ 1

0
n(t,x)dx and n(0,x)=n0(x).

We assume reasonable (C1) hypotheses on r and d, and n0∈L1([0,1]).
We then tackle the two questions above: what is the asymptotic behaviour of
(1) the total population ρ(t)?
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Figure 6: Convergence (one-population case): plot of t 7→ρ(t).

(2) the distribution of the phenotype x in the population (i.e., limit of
n(t,·)
ρ(t)

in M1(0,1))?

Firstly, it can be shown that ρ converges to ρ∞ =max
[0,1]

r
d

, i.e., to the smallest value ρ

such that

r(x)−d(x)ρ≤0 on [0,1].

Secondly, we have concentration in x on a zero-measure set.

Theorem 3.3. (i) ρ converges to ρ∞, the smallest value ρ such that r(x)−d(x)ρ≤0 on [0,1].

(ii) n(t,·) concentrates on the set
{

x∈ [0,1],r(x)−d(x)ρ∞ =0
}

.

(iii) Furthermore, if this set is reduced to a singleton x∞, then n(t,·)⇀ ρ∞δx∞ in M1(0,1),
where M1(0,1) is the space of bounded measures on [0,1], dual of the space of continuous functions
C0([0,1],R).

Proof of the theorem (1-population case), obtaining simultaneously convergence and
concentration by using a Lyapunov function:

Although in the 1D case a direct proof of convergence based on a bounded variation
(BV) hypothesis may be obtained, from which concentration easily follows due to the
exponential nature of the solutions, it is interesting to note, as this argument can be used
in the case of 2 populations, see below Section 3.4, that a global proof based on the design
of a Lyapunov function gives at the same time convergence and concentration: choosing
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Figure 7: Concentration: plot of the distribution of phenotype x in the population n(t,x) for different times t.

any measure n∞ on [0,1] such that

∫ 1

0
n∞(x)dx=ρ∞ =max

[0,1]

r
d

,

and for an appropriate weight w(x) (in fact 1/d(x)) setting

V(t)=
∫ 1

0
w(x)

{
n(t,x)−n∞(x)−n∞(x)lnn(t,x)

}
dx,

one can show that

dV
dt

=−(ρ(t)−ρ∞)2+
∫ 1

0
w(x){r(x)−d(x)ρ∞}n(t,x)dx,

which is always nonpositive, tends to zero for t→∞, thus making V a Lyapunov function,
and showing at the same time convergence and concentration. Indeed, in this expression,
the two terms are nonpositive and their sum tends to zero; the zero limit of the first one
accounts for convergence of ρ(t), and the zero limit of the second one accounts for con-
centration in x (on a zero-measure set) of lim

t→+∞
n(t,x).

Note that this kind of nonlocal integrodifferential model can be enriched to become
a reaction-diffusion, or reaction-diffusion-advection model, studied numerically, e.g.,
in [27, 28].
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3.3 Non-local Lotka-Volterra 2D model (2 populations, healthy, H, and cancer,
C) with 2 different drugs and one resistance phenotype x

A natural extension of the previous nonlocal Lotka-Volterra model to 2 populations, one
healthy and one cancerous, leads to the following equations

∂

∂t
nH(t,x)=

[
rH(x)

1+kHu2(t)
−dH(x)IH(t)−u1(t)µH(x)

]
nH(t,x),

∂

∂t
nC(t,x)=

[
rC(x)

1+kCu2(t)
−dC(x)IC(t)−u1(t)µC(x)

]
nC(t,x),

where we define an ‘environment’ function standing for the nonlocal logistic term (with-
out added drug): IH(t)=aHH.ρH(t)+aHC.ρC(t), IC(t)=aCH.ρH(t)+aCC.ρC(t), with aCH<<
aCC and aHC << aHH (intraspecific competition - within the same niche - being always
higher than interspecific competition), and ρH(t)=

∫ 1
0 nH(t,x)dx, ρC(t)=

∫ 1
0 nC(t,x)dx, u1

being a cytotoxic drug, u2 a cytostatic drug. In this setting, the cytotoxic drug u1 acts
as an added death term, whereas the cytostatic drug u1 only slows down proliferation
without killing cells, at least at low doses (u1 can be thought of as a targeted therapy, e.g.,
a tyrosine kinase inhibitor).

As a proof of concept, so far without a theorem, an illustration of possible behaviours
for the 2 cell populations is shown on Figures 8 and 9. By increasing the drug doses, one
can obtain extinction of the cancer cell population while the healthy cell population is
preserved.

3.4 Asymptotic behaviour with constant controls for the nonlocal 2-population
case Lotka-Volterra model: a theorem

Following an argument by P.-E. Jabin & G. Raoul [24], it can be proved that convergence
and concentration occur simultaneously by making use of a Lyapunov functional of the
form ∫

w(x)
{

n(t,x)−n∞(x)−n∞(x)lnn(t,x)
}

dx.

Theorem 3.4. ([39]) (Asymptotic behaviour theorem, generalising to 2 populations the 1D case)
Assume that u1 and u2 are constant: u1≡ ū1, and u2≡ ū2. Then, for any positive initial popu-

lation of healthy and of tumour cells, (ρH(t),ρC(t)) converges to the equilibrium point (ρ∞
H ,ρ∞

C ),
which can be exactly computed as follows:

Let a1≥0 and a2≥0 be the smallest nonnegative real numbers such that

rH(x)
1+αH ū2

−ū1µH(x)≤dH(x)a1 and
rC(x)

1+αCū2
−ū1µC(x)≤dC(x)a2.
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Figure 8: Healthy (or sensitive) cell population case. Simultaneous combinations of 2 drugs, one cytotoxic (u1) and
one cytostatic (u2), with increasing equal constant doses. Proof of concept, or here “Pedestrian’s optimisation”,
illustrated in the (x,t) plane (resistance phenotype in abscissae and time in ordinates). Increasing constant and
equal doses of the 2 drugs, from 0 to 1, 1.5 and 2 (arbitrary units), to be read from left to right, first line of 2,
then second line of 2: healthy cells are preserved. [29].

Then (ρ∞
H ,ρ∞

C ) is the unique solution of the invertible (aHH.aCC >> aCH.aHC) system

I∞
H = aHHρ∞

H+aHCρ∞
C = a1, I∞

C = aCHρ∞
H+aCCρ∞

C = a2.

Let AH⊂ [0,1] (resp., AC⊂ [0,1]) be the set of all points x∈ [0,1] such that equality hold in
one of the inequalities above. Then the supports of the probability measures

νH(t)=
nH(t,x)
ρH(t)

dx and νC(t)=
nC(t,x)
ρC(t)

dx

converge respectively to AH and AC as t tends to +∞.

This theorem, proved by a Lyapunov functional argument (and of which, contrary
to the 1D case, we do not know any proof otherwise) can furthermore be generalised
to the case of N > 2 interacting populations [40] (even though those N populations do
not represent cancer and healthy cell populations any more), by making use of the same
Lyapunov argument.

Note that in the initial framework of 2 populations, healthy and cancer, detailed nu-
merical studies have recently been led in a close, but more general setting by other au-
thors [7].
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Figure 9: Resistant cancer cell population case. Simultaneous combinations of 2 drugs, one cytotoxic (u1) and one
cytostatic (u2), with increasing equal constant doses. Proof of concept, or here “Pedestrian’s optimisation”,
illustrated in the (x,t) plane (resistance phenotype in abscissae and time in ordinates). Increasing constant and
equal doses of the 2 drugs, from 0 to 1, 1.5 and 2 (arbitrary units), to be read from left to right, first line of
2, then second line of 2: initially as sensitive as healthy cells, cancer cells develop resistance, however to an
insufficient level, and eventually go to extinction. A successful example of risky (as shown indeed in Section 4.1)
massive drug delivery in a population of cancer cells that are not amenable to develop enough resistance [29].

4 Therapeutic control

4.1 How to be deleterious by using constant and high doses of drugs

It is a well-known fact in many therapeutic situations, in particular in antibiotherapy and
in oncology, that exposing an organism, whose proliferation must be fought, to constant
and high doses of drugs is the best way to end up with resistance to the treatment and
total therapeutic inefficacy. Figure 10 illustrates on an example a phenomenon indeed
common to many therapeutic situations, the fact that the use of massive drug doses in
a constant schedule on populations of living organisms with the aim to eradicate them
constantly leads to resistance to the drug.

This resistance-inducing killing effect (‘What does not kill me strengthens me’ [38], para-
phrasing Nietzsche) should be avoided as long as possible in therapeutics. In summary
(and this will be shown in the next section): limit proliferation but do not try too hard
to kill cells, lest the cell population should become resistant, and rather give cytotoxics
at high doses (maximum tolerated dose, MTD) during a short interval of time only, thus
avoiding to trigger resistance. Note that the cytostatic drug u2 only slows down prolif-
eration (softly slowing down velocity in the cell division cycle), but does not arrest it, at
least at low doses, whereas the cytotoxic drug u1 kills the cells by increasing the death
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Figure 10: What should never be done (the deleterious therapy): Starting from a Gaussian-like distribution of the
resistance phenotype on the whole interval for the two populations, exposed to constant and high dose delivery
of the cytotoxic drug, one can observe strikingly different results for its asymptotic distribution: quite small
effects of the drug pressure on the phenotype of the healthy (sensitive) cell population nH , while the resistant
one nC quickly concentrates around a resistant phenotype. First 2 figures, left: distributions of the resistance
phenotype x in the 2 populations, healthy (1st) and cancer (2nd). Together with this phenotype concentration
effect, one can observe on the other 4 figures the catastrophic effects of this drug delivery strategy on 1) the

total cell population of cancer cells ρC(t)=
∫ 1

0 nC(t,x)dx, 2) the ratio of healthy cells ρH over the total cell

population ρH+ρC, 3) the population of sensitive cancer cells ρCS(t) :=
∫ 1

0 (1−x)nC(t,x)dx, and 4) the total

population of healthy cells ρH(t)=
∫ 1

0 nH(t,x)dx [39].

term, hence it is actually a direct life threat to the cell population, that ‘defends itself’
(by biological mechanisms that are partly known, linked to its plasticity, not represented
here).

Also note that an alternative strategy to such use of MTD is metronomic therapy,
that seems to prevent the development of resistance by giving low doses of cytotoxics
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over an extended period of time, likely expecting that the population, to some extent
thwarted in its proliferation, will be kept in check by the immune system. This has not
been represented in our optimal control perspective thus far (however, see [5]).

4.2 Optimal control problem, 2-population nonlocal Lotka-Volterra model

The cell environment being defined as in Section 3.3 for each one of the two populations
nH and nC as a linear combination of the two total cell populations: IH(t)= aHH.ρH(t)+
aHC.ρC(t), IC(t) = aCH.ρH(t)+aCC.ρC(t), in which coefficients a·· represent the intensity
of interactions between them (competition being much stronger within a niche than be-
tween niches, i.e., aHH >>aHC and aCC>>aCH), with again ρH(t)=

∫ 1
0 nH(t,x)dx,ρC(t)=∫ 1

0 nC(t,x)dx, the optimal control problem for the integro-differential model with evolu-
tion in the expression x of a phenotype of resistance to the cytotoxic drug u1 reads

∂

∂t
nH(t,x)=

(
rH(x)

1+αHu2(t)
−dH(x)IH(t)−u1(t)µH(x)

)
nH(t,x)

∂

∂t
nC(t,x)=

(
rC(x)

1+αCu2(t)
−dC(x)IC(t)−u1(t)µC(x)

)
nC(t,x)

0≤u1(t)≤umax
1 , 0≤u2(t)≤umax

2 .

Find controls (u1,u2) minimising

CT(u1,u2)=ρC(T)=
∫ 1

0
nC(T,x)dx,

under the additional constraints

ρH(t)
ρH(t)+ρC(t)

≥ θHC, ρH(t)≥ θH.ρH(0),

(the last constraint, with, e.g., θH =0.6, is here to limit damage to healthy cells).

Theorem 4.1. (Optimal control theorem) ([39]) Under these conditions, the optimal trajectory in
large time T>0 consists of 2 parts:

• a long-time part, with constant controls on [0,T1], at the end of which populations have
almost concentrated in phenotype (for T1 large)

• a short-time part on [T1,T] consisting of at most three arcs, for T−T1 small:

1. a boundary arc, along the constraint
ρH(t)

ρH(t)+ρC(t)
= θHC,

2. a free arc (no constraint saturating) with controls u1=umax
1 and u2=umax

2 ,
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3. a boundary arc along the constraint ρH(t)≥ θH.ρH(0) with u2=umax
2 .

The second short-time phase is all the more efficient as the phenotypes are more con-
centrated (hence, as the time T is large).

Figure 11 illustrates this theorem by simulations (optimisation using AMPL-IPOPT)
for T=30 and for T=60.

The main idea to interpret this theorem is the following:

1. Let the system naturally evolve to a phenotype concentration (long-time phase).

2. Then, apply the maximal quantity of drugs, during a short-time phase, in order to
eradicate as many tumour cells as possible.

Note that this strategy lets the cancer cell population ρC grow initially to an equilibri-
um level, while increasing the ratio ρCS/ρC of drug-sensitive cancer cells, before deliver-
ing u1=umax

1 ; only then is the cytotoxic efficacy maximal.

4.3 Mixed phenotype-spatial model (simulations without optimal control) [30]

In this section, we investigate (only by simulations) a model in which, contrary to the pre-
vious ones, Cartesian space is represented. Whereas it does not necessarily make sense to
set spatial variables to represent a tumour setting where nothing is known of the tumour
geometry - and indeed, tumour geometries can be difficult to define, in particular for ma-
lignant haemopathies, that are liquid tumours of the bone marrow - spatially structured
solid tumours exist, and they frequently adopt at their initial, non vascularised, stage
the shape of spheroids. In such tumours, the outer rim is the place where both nutrients
(glucose,oxygen) and anticancer drugs are received. Below is proposed such a spatial
model, with representation of the effects of different combinations of cytotoxic (u1) and
cytostatic (u2) drugs, that nevertheless takes into account the issue of drug-induced drug
resistance.

Here, both a 1D (radial, for a tumour spheroid) spatial variable r and a resistance
phenotype x are considered as structuring a population of cancer cells able to develop
resistance. We assume that the evolution of functions n cell population), s (nutrients),
u1 and u2 (drug concentrations) in a 3D radially symmetric tumour spheroid (r∈ [0,1]) is
ruled by the following set of equations:

∂tn(t,r,x)=
[

p(x)
1+µ2u2(t,r)

s(t,r)−d$(t,r)−µ1(x)u1(t,r)
]

n(t,r,x),

−σs∆s(t,r)+
[

γs+
∫ 1

0
p(x)n(t,r,x)dx

]
s(t,r)=0, (4.1)
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Figure 11: Solution to the optimal control problem for T=30 (upper eight panels) and for T=60 (lower eight
panels). Same sequence of 6 first figures as in Figure 10, plus optimal control solutions for cytotoxic u1 and
cytostatic u2 (last 2 figures). Note that the optimal control strategy lets the cancer cell population ρC grow

initially to an equilibrium level, while increasing the ratio
ρCS
ρC

of drug-sensitive cancer cells, before delivering

u1=umax
1 ; only then is the cytotoxic treatment efficacy maximal. The optimal control trajectory for the cytotoxic

drug is made of 3 parts, the first one with u1 = 0, the 2nd one with u1 = umax
1 , the 3rd one with u1 slightly

lower than umax
1 [39]. The horizon T is fixed, and the switching time T1 changes with T, but the behaviour of

the solutions is the same, whatever the value of T.
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−σu∆u1(t,r)+
[

γu+
∫ 1

0
µ1(x)n(t,r,x)dx

]
u1(t,r)=0, (4.2)

−σu∆u2(t,r)+
[

γu+µ2

∫ 1

0
n(t,r,x)dx

]
u1(t,r)=0, (4.3)

with zero Neumann conditions at r = 0 coming from radial symmetry and Dirichlet
boundary conditions at r=1

s(t,r=1)= s1, ∂rs(t,r=0)=0, u1,2(t,r=1)=u1,2(t), ∂ru1,2(t,r=0)=0. (4.4)

In these equations, the first one describing proliferation of the cancer cell popula-
tion, the other three representing diffusion in space, from the rim r= 1 toward the cen-
ter r = 0 of the spheroid, of a nutrient s (standing for oxygen, glucose, fatty acids, etc.,
addressing proliferation) and of the two drugs u1 and u2 (addressing the added death
rate due to the drugs), the proliferation function p and the drug sensitivity functions µ1
have been chosen to be simple decreasing affine functions of the resistance phenotype x:
p(x):=a1+a2(1−x) and µ1(x)=b1+b2(1−x) (µ2 being a sensitivity parameter to cytostat-
ic infusion is taken constant, not inducing resistance, contrary to the cytotoxic sensitivity
µ1(x), whereby resistance occurs).

For each t, we also define

ρ(t,r)=
∫ 1

0
n(t,r,x)dx (local density at radius r)

and

ρT(t)=
∫ 1

0
ρ(t,r)r2 dr (global density).

The initial distribution of the cell population is illustrated on Figure 12. Its evolu-
tion under constant doses of cytostatic or cytotoxic drugs is illustrated on Figure 13, and
under combined doses of bang-bang and constant controls on Figure 14.

The simulation illustrated by Figure 14 shows on an example (as a proof of concept)
that in periodic drug delivery strategies, one should never give cytotoxics on a constant
scheme, but that a bang-bang delivery of cytotoxics may be successful. This is in accor-
dance with the theoretical results of the previous Sections 4.1 and 4.2.

5 Conclusion: Why is evolution important in cancer?

In conclusion, we provide a list of challenging, though basic, questions on multicellular-
ity and cancer:

• (Admitted) cancer is a disease of multicellular organisms, that has been evidenced,
including in fossils, in the whole animal kingdom.
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Figure 12: Initial distribution of the cell population and its representation in the (r,x) plane (phenotype x
arbitrarily set to 0.5 to follow its trend under different conditions, see Figure 13).

• (Admitted) cancer is the failure of maintenance of a coherent (=founded on stable
cellular differentiations) multicellularity, or else:

• (Admitted) cancer may be defined as a loss of cohesion of tissues and organs of a
same organism following failures in differentiation.

• Does there exist in the construction of multicellularity a qualitative succession (ma-
jor transitions) of emergences of families of genes responsible for 1. proliferation
and apoptosis 2. differentiation (transcription factors?); 3. epigenetic control of d-
ifferentiations? In favour on this scenario, phylogenetic scenarios of evolution of
mutations in acute myeloid leukaemia (AML) go in the opposite direction with in-
creasing malignancy [19].

• Some gene mutations predispose subjects to well-identified organ cancers: do these
genes play a role in the anatomic constitution of multicellularity?

• Evolution proceeds by tinkering [25], using every possible avaible material: what in
such a succession of tinkerings makes an organism viable but fragile?

• The genes that are altered in cancers are the same that serve multicellularity de-
sign [10,12,13,52]: can we methodically collect these genes and their emergence, so
as to better understand the development of cancers?

• What defines a same organism ? A ‘self’ that would be conserved during the se-
quences of differentiations that in Man lead from the first embryonic cell to the ‘200
terminally differentiated cell types’?

• What holds together, normally without conflict, the cell types (the interferon path-
ways??), and what does the immune system recognise as non-self (foe rather than
friend) in a cancer cell?
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Figure 13: Long-time evolution of phenotype x without drugs (a), under exposure to cytostatics (b) and to
cytotoxics (c) constant infusion (C-I). On the right panels, x is in ordinates and r, from 0 (centre of the
spheroid) to 1 (outer rim of the spheroid), in abscissae. One can see that without drugs, the phenotypes slowly
reverts towards sensitivity, that the cytostatic drug u2 has only small effects, whereas the cytotoxic drug u1
induces resistance [30].

• Is there a relationship of such coherence with the major histocompatibility com-
plex (MHC)? What is its primary function, if not to ensure organism cohesion (of
tissues), and how does such coherence (of signals) operate?

• Can we parallel evolution of species and evolution of their immune system? Some
enlightenment to collect genes active at multicellularity constitution?

• Admitting that loss of control of cell differentiations is the main cause of cancer,
can we speculate that all cancers have in their evolution an epigenetic origin or an
epigenetic mandatory step?

• Some is known of mutations in genes that control epigenetics (e.g., DNMT3A,
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Figure 14: (a) Cytotoxic (constant infusion, C-I) with cytostatic (bang-bang infusion, BB-I) drug infusions.

Plots of
∫ 1

0 n(t,r,x)r2dr in the (x,t) plane (left panel) and ρT(t) with time t (right panel). Bang-bang infusion
of cytostatic drugs together with constant infusion of cytotoxic drugs weakly affects the dynamics of cancer
cells by comparison with the case without therapies, apart from temporary reductions of the global population

density. (b) Cytotoxic (BB-I) with cytostatic (C-I) drug infusions. Plots of
∫ 1

0 n(t,r,x)r2dr (left panel) and ρT(t)
(right panel). Bang-bang infusion of cytotoxic drugs together with constant delivery of cytostatic drugs can
push the cancer cell population toward extinction. The time unit is days. All values are normalised with respect
to the initial global population density [30]. This example shows that in a periodic drug delivery framework,
strategy (b) should clearly be better than strategy (a).

TET2) in early leukaemogenesis, and of genes of cell metabolism (IDH1, IDH2) in
cancers (AML, glioblastoma): can we propose and exemplify a standard scenario
linking perturbations of metabolism / perturbations of epigenetic control of differ-
entiations / cancers?

• The energetic metabolism of the cell involves intercellular communications, that
have been reported to be disrupted in cancer: is the emergence of gap junctions
essential in the development of multicellularity and are perturbations of physio-
logical gap junctions a cause or a consequence of cancer in solid tumours? [45–47].

• Cancer cell populations seem to be able to switch between glycolytic and mitochon-
drial respiratory phenotypes: do cancer cells shift easily from one to the other? In
other words, does a tumour practice a form of metabolic bet hedging?) [20].

• What are the advantages and drawbacks of these 2 phenotypes, glycolytic and res-
piratory? Efficiency of the tricarboxylic acid [TCA, aka Krebs] cycle vs. rapidi-
ty of anaerobic glycolysis? When did the mitochondrial respiratory chain appear
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in evolution as a necessary condition for the establishment of reliable intercellular
communications?

• What is more relevant for stress response of a cell population (adaptable, as in the
case of a tumour): maintain a subpopulation of all-stress resistant cells, or main-
tain a subpopulation of cells expressing ‘cold genes’ and able to launch different
resistance mechanisms in different cells? (... stochastically chosen?)

• Can bet hedging be seen as a ‘tumour strategy’ to diversify the responses of a plas-
tic cell population to deadly stress (as high doses of cytotoxic drugs) by launching
different stress response mechanisms in different cells? (ABC transporters, detoxi-
cation enzymes, blocking influx, DNA repair, and others) [3].

• Does stress response induce derepression of cold genes? Presented in [50], this hy-
pothesis proposes that the existence of very ancient genes, constituted in a remote
past of our planet, makes plastic cell populations able to put at work different sur-
vival programs in a state of emergency, with bet hedging, i.e., (stochastic or not)
distribution of survival strategies, in a cancer cell population.

• Does bet hedging shuffle phenotypes, setting favorable bases for the emergence of
specialisation [1, 32–35] and cooperativity in tumours [31, 36, 42], making them vi-
able?
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Camille Pouchol and Emmanuel Trélat, co-authors of the mathematical papers whose
main results are presented in this study.

References

[1] C.A. Aktipis, A.M. Boddy, R.A. Gatenby and et al. Life history trade-offs in cancer evolution.
Nature Rev. Cancer, 13:883-892, 2013.

[2] T. Boveri. The origins of malignant tumors. Williams Wilkins, Baltimore, 1929.
[3] B. Brutovsky and D. Horvath. Structure of intratumor heterogeneity: is cancer hedging its

bets? arXiv (2013),1307.0607.
[4] K.J. Bussey, L.H. Cisneros, C.H. Lineweaver and et al. Ancestral gene regulatory networks

drive cancer. PNAS, 114(24):6160-6162, 2017.
[5] C. Carrère. Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor.

Biol., 413:24-33, 2017.
[6] R.H. Chisholm, T. Lorenzi and J. Clairambault. Cell population heterogeneity and evolu-

tion towards drug resistance in cancer: biological and mathematical assessment, theoretical
treatment optimisation. Biochem. Biophys. Acta, 1860:2627-2645, 2016.

[7] H. Cho and D. Levy. The impact of competition between cancer cells and healthy cells on
optimal drug delivery. Math. Mod. Nat. Phenom., 2019, to appear.



494 J. Clairambault / J. Math. Study, 52 (2019), pp. 470-496

[8] L.H. Cisneros, K.J. Bussey, A.H. Orr and et al. Ancient genes establish stress-induced muta-
tion as a hallmark of cancer. PLoS One, 12(4):e0176258, 2017.

[9] A.S. Cleary, T.L. Leonard, S.A. Gestl and et al. Tumour cell heterogeneitymaintained by co-
operating subclones in Wnt-driven mammary cancers. Nature Lett., 508:113-117, 2014.

[10] P.C.W. Davies and C.H. Lineweaver. Cancer tumors as metazoa 1.0: tapping genes of ancient
ancestors. Phys. Biol., 8(1):015001, 2011.

[11] T. Dobzhansky. Nothing in biology makes sense except in the light of evolution. American
Biology Teacher, 35(3):125-129, 1973.
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