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Abstract. We investigate the cubature points based triangular spectral element method
and provide accuracy results for elliptic problems in non polygonal domains using
various isoparametric mappings. The capabilities of the method are here again clearly
confirmed.
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1 Introduction

Extending the capabilities of the quadrangle based spectral element method to the trian-
gle based one, say from the QSEM to the TSEM, has received a considerable attention
in the last twenty years. The relevant choice of interpolation points for the triangle has
thus motivated a lot of works, see e.g. the review paper [15] and references herein. Sev-
eral sets of points have indeed been proposed, some of them showing the advantage of
simplicity in their generation, thus allowing an easy extension to the tetrahedron, e.g.the
so-called warp & blend points [21], whereas some other ones are more satisfactory from
the theoretical point of view, e.g.the celebrated Fekete points of the triangle, but much
more difficult to compute [20].

With respect to the QSEM, based on the use of the tensorial product of Gauss-Lobatto-
Legendre (GLL) nodes, such interpolation points are however not quadrature points, so
that the so called spectral accuracy gets lost if not using for the quadratures a separate
set of points, as e.g.done for the Fekete-Gauss approach [14]. Using two separate sets
of points shows however some drawbacks, because the mass matrix is then no longer
diagonal. Thus, when solving an evolution problem with an explicit time scheme, one
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has at each time step to solve a mass matrix algebraic system. Also, a diagonal mass
matrix can be useful to set up high order differentiation operators [12]. This is why it is
of interest to design a TSEM that makes use of a single set of points showing both nice
quadrature and interpolation properties. This was the goal of the cubature points based
TSEM, as developed in the last few years [2, 5, 9, 13].

Another difficulty with SEMs, and more generally with high order FEMs, is to main-
tain the accuracy when the computational domain is no longer polygonal. Several strate-
gies have been proposed to handle curved elements, from transfinite mappings [6] to
PDEs based transformations, e.g.the harmonic extension.

The present work follows two anterior studies:

• In [16], using the Fekete-Gauss TSEM we compared different strategies for curved
triangular spectral elements, i.e. when isoparametric mappings are required to cor-
rectly approximate with curved spectral elements the presence of a curved bound-
ary.

• In [17], for computational domains of polygonal shape we compared the cubature
TSEM, as proposed in [9], and the Fekete-Gauss one. In terms of accuracy for ellip-
tic problems, it turned out that these two TSEMs compare well. With non Dirichlet
or non homogeneous Neumann conditions, i.e. as soon as boundary integrals are
involved, some care is however needed if using the cubature TSEM.

Here the goal is to extend the results obtained in [16] to the case where the cubature
TSEM is used. As in [16, 17] we only focus on elliptic problems, but keep in mind for
future works the inherent difficulties associated to constrained operators, see e.g. [1].

2 Cubature points based TSEM

For the sake of completeness, let us recall that [17]:

• If two different sets of points are used for interpolation and quadrature, then the
space PN(T̂) of polynomials of maximal (total) degree N, defined on the reference
triangle T̂={(r,s) :r∈(−1,1),s∈(−1,−r)}, is usually used as approximation space.
The cardinality of this space equals n=(N+1)(N+2)/2, that can be associated to n
interpolation points if using Lagrange polynomials as basis functions. If 3 of these
nodes coincide with the vertices of the element, then 3N of these n points should
belong to the edges of T̂ and the remaining (N−1)(N−2)/2 are the inner nodes.
Usually, the edge nodes proposed in the literature coincide with the GLL points.
Since one does not know an explicit formulation of the Lagrange basis functions,
say ϕi(r,s), 1≤ i≤ n, to compute their values or those of their derivatives at given
point one generally makes use the orthogonal Kornwinder-Dubiner (KD) basis [4],
for which explicit formula exist. Gauss points for the triangle and the correspond-
ing quadrature formula may be found in the literature, up to degree M ≈ 20 if a


