On Finite Groups Whose Nilpotentisers Are Nilpotent Subgroups

Seyyed Majid Jafarian Amiri¹ and Hojjat Rostami^{2,*}

 ¹ Department of Mathematics, Faculty of Sciences, University of Zanjan, P. O. Box 45371-38791, Zanjan, Iran
² Department of Education, Zanjan, Iran.

Received 5 June 2017; Accepted (in second revised version) 31 October 2017

Abstract. Let *G* be a finite group and $x \in G$. The nilpotentiser of *x* in *G* is defined to be the subset $Nil_G(x) = \{y \in G : \langle x, y \rangle \text{ is nil potent}\}$. *G* is called an \mathcal{N} -group (n-group) if $Nil_G(x)$ is a subgroup (nilpotent subgroup) of *G* for all $x \in G \setminus Z^*(G)$ where $Z^*(G)$ is the hypercenter of *G*. In the present paper, we determine finite \mathcal{N} -groups in which the centraliser of each noncentral element is abelian. Also we classify all finite n-groups.

AMS subject classifications: 20D60 **Key words**: Finite group, nilpotentiser, N-group.

1 Introduction

Consider $x \in G$. The centraliser, nilpotentiser and engeliser of x in G are

$$C_G(x) = \{y \in G : \langle x, y \rangle \text{ is abelian }\}, Nil_G(x) = \{y \in G : \langle x, y \rangle \text{ is nil potent }\}$$

and

$$E_G(x) = \{ y \in G : [y_n x] = 1 \text{ for some } n \}$$

respectively. Obviously

 $C_G(x) \subseteq Nil_G(x) \subseteq E_G(x)$ for each $x \in G$.

Note that $Nil_G(x)$ and $E_G(x)$ are not necessarily subgroups of G. So determining the structure of groups by nilpotentisers (or engelisers) is more complicated than the centralisers. Let G be a finite group. Let $1 \le Z_1(G) < Z_2(G) < \cdots$ be a series of subgroups of G, where $Z_1(G) = Z(G)$ is the center of G and $Z_{i+1}(G)$, for i > 1, is defined by

$$\frac{Z_{i+1}(G)}{Z_i(G)} = Z(\frac{G}{Z_i(G)}).$$

http://www.global-sci.org/jms

©2017 Global-Science Press

^{*}Corresponding author. *Email addresses:* sm_jafarian@znu.ac.ir (S. M. J. Amiri), h.rostami5991@gmail .com (H. Rostami)

Let $Z^*(G) = \bigcup_i Z_i(G)$. The subgroup $Z^*(G)$ is called the hypercenter of G. We say a group is n-group in which $Nil_G(x)$ is a nilpotent subgroup for each $x \in G \setminus Z^*(G)$.

Now a group is N-group in which the nilpotentiser of each element is subgroup and a *CA*-group is a group in which the centraliser of each noncentral element is abelian (see [16] or [5]). The class of N-groups were defined and investigated by Abdollahi and Zarrin in [1]. In particular they showed that every centerless *CA*-group is an N-group. In this paper, we shall prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian CA-group. Then G is an N-group if and only if we have one of the following types:

- 1. G has an abelian normal subgroup K of prime index.
- 2. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z(G)}$, where *K* and *L* are abelian.
- 3. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z(G)}$, such that K = PZ, where P is a normal Sylow p-subgroup of G for some prime divisor p of |G|, P is a CA-group, $Z(P) = P \cap Z$ and L = HZ, where H is an abelian p'-subgroup of G.
- 4. $\frac{G}{Z(G)} \cong PSL(2,q)$ and $G' \cong SL(2,q)$ where q > 3 is a prime-power number and $16 \nmid q^2 1$.
- 5. $\frac{G}{Z(G)} \cong PGL(2,q)$ and $G' \cong SL(2,q)$ where q > 3 is a prime and $8 \nmid q \pm 3$.
- 6. $G = P \times A$ where A is abelian and P is a nonabelian CA-group of prime-power order.

A group is said to be an *E*-group whenever engeliser of each element of such group is subgroup. The class of *E*-groups was defined and investigated by Peng in [13,14]. Also Heineken and Casolo gave many more results about them (see [3,4,6]). Now recall that an engel group is a group in which the engeliser of every elements is the whole group. If *G* is an *E*-group such that the engeliser of every element is engel, *G* is an n-group since every finite engel group is nilpotent. This result motivates us to classify all finite n-groups in following theorem.

But before giving it, recall that the Hughes subgroup of a group *G* is defined to be the subgroup generated by all the elements of *G* whose orders are not *p* and denoted by $H_p(G)$ where *p* is a prime. Also a group *G* is said to be of Hughes-Thompson type, if for some prime *p* it is not a *p*-group and $H_p(G) \neq G$.

Theorem 1.2. Let G be a nonnilpotent group. Then G is an n-group if and only if $\frac{G}{Z^*(G)}$ satisfies one of the following conditions:

(1) $\frac{G}{Z^*(G)}$ is a group of Hughes-Thompson type and

$$Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))\Big|=p$$

for all $xZ^*(G) \in \frac{G}{Z^*(G)} \setminus H_p(\frac{G}{Z^*(G)});$