Grothendieck Property for the Symmetric Projective Tensor Product

Yongjin Li¹ and Qingying Bu^{2,*}

¹ Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China,

² Department of Mathematics, University of Mississippi, Mississippi 38677, USA.

Received February 29, 2016; Accepted March 2, 2016

Abstract. For a Banach space *E*, we give sufficient conditions for the Grothendieck property of $\hat{\otimes}_{n,s,\pi}E$, the symmetric projective tensor product of *E*. Moreover, if *E*^{*} has the bounded compact approximation property, then these sufficient conditions are also necessary.

AMS subject classifications: 46G25, 46B28, 46H60 **Key words**: Grothendieck property, homogeneous polynimial, projective tensor product.

1 Results

Recall that a Banach space is said to have the *Grothendieck property* (GP in short) if every weak^{*} convergent sequence in its dual is weakly convergent (see, e.g., [6, 10]). González and Gutiérrez in [8] showed that if $n \ge 2$ then $\hat{\otimes}_{n,s,\pi}E$, the symmetric projective tensor product of a Banach space *E*, has GP if and only if $\hat{\otimes}_{n,s,\pi}E$ is reflexive. In this short paper, we show that for any $n \ge 1$, if *E* has GP and every scalar-valued continuous *n*-homogeneous polynomial on *E* is weakly continuous on bounded sets, then $\hat{\otimes}_{n,s,\pi}E$ has GP. Moreover, if E^* has the bounded compact approximation property, then these sufficient conditions for $\hat{\otimes}_{n,s,\pi}E$ having GP are also necessary.

Let *E* and *F* be Banach spaces over \mathbb{R} or \mathbb{C} and let *n* be a positive integer. A map $P: E \to F$ is said to be an *n*-homogeneous polynomial if there is a symmetric *n*-linear operator *T* from $E \times \cdots \times E$ (a product of *n* copies of *E*) into *F* such that P(x) = T(x,...,x). Indeed, the symmetric *n*-linear operator $T_P: E \times \cdots \times E \to F$ associated to *P* can be given by the *Polarization Formula*:

$$T_P(x_1,\ldots,x_n) = \frac{1}{2^n n!} \sum_{\epsilon_i=\pm 1} \epsilon_1 \cdots \epsilon_n P\left(\sum_{i=1}^n \epsilon_i x_i\right), \quad \forall x_1,\ldots,x_n \in E.$$

http://www.global-sci.org/jms

^{*}Corresponding author. Email addresses: stslyj@mail.sysu.edu.cn (Y. Li), qbu@olemiss.edu (Q. Bu)

Let $\mathcal{P}(^{n}E;F)$ denote the space of all continuous *n*-homogeneous polynomials from *E* into *F* with its norm

$$||P|| = \sup\{||P(x)||: x \in E, ||x|| \leq 1\},\$$

and let $\mathcal{P}_w({}^{n}E;F)$ denote the subspace of all P in $\mathcal{P}({}^{n}E;F)$ that are weakly continuous on bounded sets. In particular, if $F = \mathbb{R}$ or \mathbb{C} , then $\mathcal{P}({}^{n}E;F)$ and $\mathcal{P}_w({}^{n}E;F)$ are simply denoted by $\mathcal{P}({}^{n}E)$ and $\mathcal{P}_w({}^{n}E)$ respectively.

Let $\otimes_n E$ denote the *n*-fold algebraic tensor product of *E*. For $x_1 \otimes \cdots \otimes x_n \in \otimes_n E$, let $x_1 \otimes_s \cdots \otimes_s x_n$ denote its symmetrization, that is,

$$x_1 \otimes_s \cdots \otimes_s x_n = \frac{1}{n!} \sum_{\sigma \in \pi(n)} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)},$$

where $\pi(n)$ is the group of permutations of $\{1,...,n\}$. Let $\bigotimes_{n,s}E$ denote the *n*-fold symmetric algebraic tensor product of E, that is, the linear span of $\{x_1 \bigotimes_s \cdots \bigotimes_s x_n : x_1,...,x_n \in E\}$ in $\bigotimes_n E$. It is known that each $u \in \bigotimes_{n,s} E$ has a representation $u = \sum_{k=1}^m \lambda_k x_k \otimes \cdots \otimes x_k$ where $\lambda_1,...,\lambda_m$ are scalars and $x_1,...,x_m$ are vectors in E. Let $\bigotimes_{n,s,\pi} E$ denote the *n*-fold symmetric projective tensor product of E, that is, the completion of $\bigotimes_{n,s} E$ under the symmetric projective tensor norm on $\bigotimes_{n,s} E$ defined by

$$\|u\| = \inf\left\{\sum_{k=1}^{m} |\lambda_k| \cdot \|x_k\|^n : x_k \in E, u = \sum_{k=1}^{m} \lambda_k x_k \otimes \cdots \otimes x_k\right\}, \quad u \in \bigotimes_{n,s} E.$$

For each *n*-homogeneous polynomial $P: E \to F$, let $A_P: \bigotimes_{n,s} E \to F$ denote its linearization, that is,

$$A_P(x \otimes \cdots \otimes x) = P(x), \quad \forall x \in E.$$

Then under the isometry: $P \rightarrow A_P$,

$$\mathcal{P}(^{n}E;F) = \mathcal{L}(\hat{\otimes}_{n,s,\pi}E;F),$$

where $\mathcal{L}(\hat{\otimes}_{n,s,\pi}E;F)$ is the space of all continuous linear operators from $\hat{\otimes}_{n,s,\pi}E$ to *F*. In particular,

$$\mathcal{P}(^{n}E) = (\hat{\otimes}_{n,s,\pi}E)^{*},$$

where $(\hat{\otimes}_{n,s,\pi} E)^*$ is the topological dual of $\hat{\otimes}_{n,s,\pi} E$.

For the basic knowledge about homogeneous polynomials and symmetric projective tensor products, we refer to [7, 12, 13].

For a Banach space *E*, let *E*^{*} denote its dual and *E*^{**} denote its second dual. For every $P \in \mathcal{P}(^{n}E)$, let $\tilde{P} \in \mathcal{P}(^{n}E^{**})$ denote the *Aron-Berner extension* of *P* (see, e.g., [1,5]). To obtain $\hat{\otimes}_{n,s,\pi}E$ having GP, we first need the following lemma, which is a special case of [9, Corollary 5].

Lemma 1.1. ([9]) Let $P_k, P \in \mathcal{P}_w(^nE)$ for each $k \in \mathbb{N}$. Then $\lim_k P_k = P$ weakly in $\mathcal{P}_w(^nE)$ if and only if $\lim_k \widetilde{P}_k(z) = \widetilde{P}(z)$ for every $z \in E^{**}$.