Vol. **49**, No. 4, pp. 319-324 December 2016

Hermite Expansion of the Riemann Zeta Function

Bang-He Li*

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijnig 100190, P. R. China

Received March 15, 2016; Accepted May 2, 2016

Abstract. Let $\zeta(s)$ be the Riemann zeta function, $s = \sigma + it$. For $0 < \sigma < 1$, we expand $\zeta(s)$ as the following series convergent in the space of slowly increasing distributions with variable *t*:

$$\zeta(\sigma+it) = \sum_{n=0}^{\infty} a_n(\sigma)\psi_n(t),$$

where

$$\psi_n(t) = (2^n n! \sqrt{\pi})^{-1/2} e^{\frac{-t^2}{2}} H_n(t),$$

 $H_n(t)$ is the Hermite polynomial, and

$$a_n(\sigma) = 2\pi(-1)^{n+1}\psi_n(i(1-\sigma)) + (-i)^n \sqrt{2\pi} \sum_{m=1}^{\infty} \frac{1}{m^{\sigma}}\psi_n(\ln m).$$

This paper is concerned with the convergence of the above series for $\sigma > 0$. In the deduction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz' distributions.

AMS subject classifications: 11M06, 33C45, 46F05 **Key words**: Riemann zeta function, Hermite expansion, Schwartz distributions.

1 Results

Let $\zeta(s)$ be the famous Riemann Zeta function which is holomorphic for $s = \sigma + it \in C - \{1\}$. It is well known that if $0 < \sigma < 1$ then

$$\zeta(s) = s \int_0^\infty \frac{[x] - x}{x^{s+1}} dx$$

(see [1] or [2]). By the substitute of variables $x = e^y$, we get

$$\zeta(s) = s \int_{-\infty}^{\infty} ([e^y] - e^y) e^{-sy} dy.$$

http://www.global-sci.org/jms

©2016 Global-Science Press

^{*}Corresponding author. Email address: libh@amss.ac.cn (B.-H. Li)

Set

$$f(y) = [e^y] - e^y.$$
(1.1)

Then for $0 < \sigma < 1$, $e^{-\sigma y} f(y)$ is a slowly increasing function, so can be regarded as an element of S', the dual space of the space S of rapidly decreasing functions on R. The Laplace transformation $\mathcal{L}(f)(s)$ of f is then defined on the trip $0 < \sigma < 1$ both in the ordinary and distributional sense, that is

$$\mathcal{L}(f)(s) = \zeta(s)/s.$$

Let $f' \in S'$ be the derivative of f in the distributional sense. then $e^{-\sigma y}f'(y) \in S'$ for $0 < \sigma < 1$, and Laplace transformation $\mathcal{L}(f')(s)$ is defined on the strip $0 < \sigma < 1$ such that

$$\mathcal{L}(f')(s) = \zeta(s)$$

([3] Chapter 8). So by the relation of Fourier and Laplace transformation of distribution (see also [3]), we see that $\zeta(\sigma+it)$ as function of t is the Fourier transformation of $e^{-\sigma y}f'(y)$ in the distributional sense, where the Fourier transformation is defined by $g(x) \rightarrow \int_{-\infty}^{\infty} g(x)e^{-ixy}dx$ for $g \in L^1(R)$.

Recall that the Hermite polynomials are defined as

$$H_n(x) = e^{x^2} \left(\frac{d}{dx}\right)^n e^{-x^2}, n = 0, 1, \dots$$

$$\psi_n(t) = \left(2^n n! \sqrt{\pi}\right)^{-1/2} e^{\frac{-t^2}{2}} H_n(t), n = 0, 1, \dots$$

form a complete normalized orthogonal system in $L^2(R)$.

Xiaqi Ding and his collaborators introduced and developed the theory of Hermite expansions of generalized functions [4]. The aim of this paper is to give the Hermite expansion of $\zeta(\sigma+it)$ as function of t for $0 < \sigma < 1$. For this, we give first the Hermite expansion of $e^{-\sigma y}f'(y) \in S'$ for fixed σ . Now

$$f'(y) = -e^y + \sum_{m=1}^{\infty} \delta(y - \ln m),$$

where δ is the Dirac δ -function. So

$$e^{-\sigma y} f'(y) = -e^{(1-\sigma)y} + \sum_{m=1}^{\infty} \frac{1}{m^{\sigma}} \delta(y - \ln m).$$
(1.2)

The following lemma gives the Hermite expansion of $-e^{(1-\sigma)y}$.

Lemma 1.1. For any complex number a,

$$\int_{-\infty}^{\infty} e^{ax} \psi_n(x) dx = (-i)^n \sqrt{2\pi} \psi_n(ia).$$

320