Composite Implicit Iteration Process for Asymptotically Hemi-Pseudocontractive Mappings

Ling Luo and Weiping Guo *

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, P. R. China.

Received 22 December, 2014; Accepted 6 November, 2015

Abstract. In Banach space, the composite implicit iterative process for uniformly L-Lipschitzian asymptotically hemi-pesudocontractive mappings are studied, and the sufficient and necessary conditions of strong convergence for the composite implicit iterative process are obtained.

AMS subject classifications: 47H09, 47J05, 47J25

Key words: Asymptotically hemi-pseudocontractive mapping, fixed point, composite implicit iterative scheme, Banach space.

1 Introduction and preliminaries

Throughout this work, we assume that *E* is a real Banach space. E^* is the dual space of *E* and $J: E \rightarrow 2^{E^*}$ is the normalized duality mapping defined by

 $J(x) = \{ f \in E^* : < x, f > = ||x|| ||f||, ||f|| = ||x|| \}, \quad \forall x \in E,$

where $\langle \cdot, \cdot \rangle$ denotes duality pairing between *E* and *E*^{*}. A single-valued normalized duality mapping is denoted by *j*.

Let *C* be a nonempty subset of *E* and $T: C \to C$ a mapping, we denote the set of fixed points of *T* by $F(T) = \{x \in C; Tx = x\}$.

Definition 1.1. ([1]) *T* is said to be asymptotically nonexpansive, if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^n x - T^n y|| \le k_n ||x - y||, \quad \forall x, y \in C \text{ and } n \ge 1.$$

*Corresponding author. *Email addresses:* guoweiping18@aliyun.com (W. Guo), luoling19901120@163.com (L. Luo)

http://www.global-sci.org/jms

©2015 Global-Science Press

L. Luo and W. Guo / J. Math. Study, 48 (2015), pp. 398-405

(2) ([2]) *T* is said to be uniformly L-Lipschitzian, if there exists L > 0 such that

$$||T^n x - T^n y|| \leq L ||x - y||, \quad \forall x, y \in C \text{ and } n \geq 1.$$

(3) ([3]) *T* is said to be asymptotically pseudocontractive, if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$, for any $x, y \in C$, there exists $j(x-y) \in J(x-y)$ such that

$$\langle T^n x - T^n y, j(x-y) \rangle \leq k_n ||x-y||^2, n \geq 1.$$

(4) ([4]) *T* is said to be asymptotically hemi-pseudocontractive, if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that, for any $x \in C$ and $p \in F(T)$, there exists $j(x-p) \in J(x-p)$ such that

$$\langle T^n x - p, j(x-p) \rangle \leq k_n ||x-p||^2, n \geq 1.$$

Remark 1.1. It is easy to see that if *T* is an asymptotically nonexpansive mapping, then *T* is a uniformly L-Lipschitzian and asymptotically pseudocontractive mapping, where $L = \sup_{n \ge 1} \{k_n\}$; if *T* is an asymptotically pseudocontractive mapping with $F(T) \neq \emptyset$, then *T* is an asymptotically hemi-pseudocontractive mapping.

Let *C* be a nonempty closed convex subset of *E* and $T : C \to C$ be a uniformly L-Lipschitzian asymptotically hemi-pseudocontractive mapping, for any given $x_1 \in C$, we introduce a composite implicit iteration process $\{x_n\}$ as follows:

$$\begin{cases} x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n y_n, \\ y_n = (1 - \beta_n) x_n + \beta_n T^n x_{n+1}, \quad \forall n \ge 1, \end{cases}$$
(1.1)

where $\{\alpha_n\}, \{\beta_n\}$ are two real sequences in [0,1].

As $\beta_n = 0$ for all $n \ge 1$, then (1.1) reduces to

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n x_n.$$
(1.2)

Remark 1.2. For any given $x_n \in C$, define the mapping $A_n: C \to C$, such as:

$$A_n x = (1 - \alpha_n) x_n + \alpha_n T^n [(1 - \beta_n) x_n + \beta_n T^n x], \quad \forall x \in C,$$

where *C* is a nonempty closed convex subset of *E* and $T:C \rightarrow C$ is a uniformly L-Lipschitzian. Then

$$||A_{n}x - A_{n}y|| = ||\alpha_{n}(T^{n}[(1 - \beta_{n})x_{n} + \beta_{n}T^{n}x] - T^{n}[(1 - \beta_{n})x_{n} + \beta_{n}T^{n}y])||$$

$$\leq \alpha_{n}\beta_{n}L||T^{n}x - T^{n}y||$$

$$\leq \alpha_{n}\beta_{n}L^{2}||x - y||$$

for all $x, y \in C$. Thus A_n is a contraction mapping if $\alpha_n \beta_n L^2 < 1$ for all $n \ge 1$, and so there exists a unique fixed point $x_{n+1} \in C$ of A_n , such that $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n[(1 - \beta_n)x_n + \beta_n T^n x_{n+1}]$. This shows that the composite implicit iteration process (1.1) is well defined.