The Distortion Theorems for Harmonic Mappings with Negative Coefficient Analytic Parts

Mengkun Zhu*and Xinzhong Huang

School of Mathematical Science, Huaqiao University, Quanzhou 362021, Fujian Province, P. R. China.

Received 22 May, 2015; Accepted 9 July, 2015

Abstract. Some sharp estimates for coefficients, distortion and the growth order are obtained for harmonic mappings $f \in TL^{\alpha}_{H}$ which are locally univalent harmonic mappings in the unit disk $\mathbb{D} := \{z : |z| < 1\}$. Moreover, denoting the subclass TS^{α}_{H} of the normalized univalent harmonic mappings, we also estimate the growth of $|f|, f \in TS^{\alpha}_{H}$, and their covering theorems.

AMS subject classifications: 30D15, 30D99

Key words: Harmonic mapping, coefficient estimate, distortion theorem, covering problem.

1 Introduction

Let S denote the class of functions of the form $F(z) = z + \sum_{n=2}^{\infty} a_n z^n$, that are analytic and univalent in the unit disk $\mathbb{D} := \{z : |z| < 1\}$. Denoting T to be the subclass of S consisting of functions whose nonzero coefficients, from the second on, are negative. That is, an univalent analytic function $F \in T$ if and only if it can be written in the form

$$F(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \ z \in \mathbb{D}.$$
 (1.1)

A complex-valued harmonic function f in the unit disk $\mathbb D$ has a canonical decomposition

$$f(z) = h(z) + \overline{g(z)} \tag{1.2}$$

where h and g are analytic in \mathbb{D} with g(0) = 0. Usually, we call h the analytic part of f and g the co-analytic part of f. A complete and elegant account of the theory of planar harmonic mappings is given in Duren's monograph [1].

^{*}Corresponding author. Email addresses: ZMK900116@163.com (M. Zhu), huangXZ@hqu.edu.cn (X. Huang)

In [2], Ikkei Hotta and Andrzej Michalski denoted the class L_H of all normalized locally univalent and sense-preserving harmonic functions in the unit disk with h(0) = g(0) = h'(0) - 1 = 0. Which means every function $f \in L_H$ is uniquely determined by coefficients of the following power series expansions

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad z \in \mathbb{D}.$$
 (1.3)

where a_n , $b_n \in \mathbb{C}$, n = 2,3,4,... Clunie and Sheil-small introduced in [3] the class S_H of all normalized univalent harmonic mappings in \mathbb{D} , obviously, $S_H \subset L_H$.

Lewy [4] proved that a necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathbb{D} is $J_f(z) > 0$, where

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2, \ z \in \mathbb{D}.$$
 (1.4)

To such a function f, not identically constant, let

$$\omega(z) = \frac{g'(z)}{h'(z)}, \ z \in \mathbb{D}, \tag{1.5}$$

then $\omega(z)$ is analytic in $\mathbb D$ with $|\omega(z)| < 1$, it is called the second complex dilatation of f. In [5], Silverman investigated the subclass of T which denoted by $T^*(\beta)$, starlike of order $\beta(0 \le \beta < 1)$. That is, a function $F(z) \in T^*(\beta)$ if $\operatorname{Re}\{zF'(z)/F(z)\} > \beta$, $z \in \mathbb D$. It was proved in [5] that

Corollary 1.1.

$$T = T^*(0)$$
.

In [7-8], Dominika Klimek and Andrzej Michalski studied the cases when the analytic parts h is the identity mapping or a convex mapping, respectively. The paper [2] was devoted to the case when the analytic h is a starlike analytic mapping. In [9], Qin Deng got sharp results concerning coefficient estimate, distortion theorems and covering theorems for functions in T. The main idea of this paper is to characterize the subclasses of L_H and S_H when $h \in T$.

In order to establish our main results, we need the following theorems and lemmas.

Theorem 1.1. ([8]) A function $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$ is in T if and only if

$$\sum_{n=2}^{\infty} n|a_n| \le 1, \quad z \in \mathbb{D}. \tag{1.6}$$

Lemma 1.1. ([10]) If $f(z) = a_0 + a_1 z + ... + a_n z^n + ...$ is analytic and $|f(z)| \le 1$ on \mathbb{D} , then

$$|a_n| \le 1 - |a_0|^2$$
, $n = 1, 2, \dots$ (1.7)