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Explicit Time-stepping for Moving Meshes
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Abstract. In order to move the nodes in a moving mesh method a time-stepping scheme
is required which is ideally explicit and non-tangling (non-overtaking in one dimen-
sion (1-D)). Such a scheme is discussed in this paper, together with its drawbacks, and
illustrated in 1-D in the context of a velocity-based Lagrangian conservation method
applied to first order and second order examples which exhibit a regime change after
node compression. An implementation in multidimensions is also described in some
detail.
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1 Adaptive moving meshes

Moving mesh methods are an alternative (or addition) to fixed mesh adaptive methods
in which a given number of mesh points are relocated at each time step (also known as r-
adaptivity). Relocation may be based on a velocity generated from geometric or physical
principles, as in the GCL method [5] and methods based on conservation [1, 2], or on a
mapping from a reference space to physical space, as in MMPDEs [6, 8, 9] and Parabolic
Monge-Ampere [7] methods. Thus there is a requirement to advance the mesh in time
from a given velocity or map.

In numerical implementations the size of the time step is often governed by stability
considerations dependent on the numerical method used. A further challenge in advanc-
ing the mesh is the avoidance of node overtaking in 1-D or mesh tangling in 2-D. Thus
time steps are sought that are not only stable but also preserve the ordering of the nodal
positions in 1-D or the integrity of the mesh in higher dimensions.

For example, in one dimension, given a velocity Vn
j at a node Xn

j , (j=0,.. . , J), at time

level n, the explicit Euler time stepping scheme,

Xn+1
j =Xn

j +hVn
j , (1.1)
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where h is the time step, is often used to update the nodes Xn
j , (j = 0,.. ., J), but there

is no guarantee that the ordering of the nodes will be preserved. An obvious sufficient
a priori condition for preserving the ordering of the nodes is easily obtained from the
nodal velocities and the node spacing by restricting the time step h to the shortest time
that any node Xn

j takes to cross one half of either of the adjacent node spacings i.e.

h<
1

2
min

j

∣∣∣∣∣
∆Xm

j±1/2

∆Vk
j±1/2

∣∣∣∣∣

for all j=0,.. ., J, where ∆Xj±1/2 and ∆Vj±1/2 denote the differences in Xj and Vj across the
interval j±1/2, respectively. However, since nodes often move in concert this condition
is highly restrictive and usually far from necessary. At the other exteme, a necessary
time step for preserving the ordering of the nodes is obtained pragmatically by taking a
speculative time step and reducing it if any node overtaking has taken place, but this is a
cumbersome process and not conducive to theoretical analysis.

Implicit schemes fare better, but require more work per time step. For example, in [3]
a maximum principle is used in one dimension to ensure ordering of the nodes. However,
in this paper we shall only be concerned with explicit schemes for moving the nodes.

The layout of the paper is as follows. In the next section we introduce an explicit
order-preserving scheme in 1-D and discuss its analytic basis and local truncation error.
This is followed by an extension of the scheme using a higher order quadrature. In the
next section two evolution problems are described to which the schemes may be applied.
Numerical examples are given in Section 4 using the Lagrangian moving mesh finite
difference scheme of [11, 12]. Finally, in Section 5 the extension to multidimensions is
described in detail, with a summary in Section 6.

2 An explicit order-preserving scheme in 1-D

One way of achieving order-preservation of the nodes in 1-D is to focus on the differences
∆Xj+1/2 between the nodal positions Xj, Xj+1. Applying the explicit Euler scheme (1.1)
to ∆Xj+1/2

∆Xn+1
j+1/2 =∆Xn

j+1/2+h∆Vn
j+1/2 =∆Xn

j+1/2

(
1+h

∆Vn
n+1/2

∆Xn
j+1/2

)
, (2.1)

where the bracket in the final term has the status of an amplification factor. If the am-
plification factor becomes negative then the interval length ∆Xj+1/2 changes sign and
tangling occurs.

Suppose that the nodes are ordered at time level n so that ∆Xn
j+1/2 is positive for all

j. Then, if ∆Vn
j+1/2 is also positive for all j, the amplification factor in (2.1) is positive and

∆Xj+1/2 remains positive after a time step, thus preserving the ordering of the nodes.


