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Abstract. In this paper, a high order accurate spectral method is presented for the
space-fractional diffusion equations. Based on Fourier spectral method in space and
Chebyshev collocation method in time, three high order accuracy schemes are pro-
posed. The main advantages of this method are that it yields a fully diagonal represen-
tation of the fractional operator, with increased accuracy and efficiency compared with
low-order counterparts, and a completely straightforward extension to high spatial di-
mensions. Some numerical examples, including Allen-Cahn equation, are conducted
to verify the effectiveness of this method.
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1 Introduction

Fractional differential equations have been proved to be valuable tools in modeling of
many phenomena in various fields. In water resources, fractional models provide a use-
ful description of chemical and contaminant transport in heterogeneous aquifers [1, 2].
In transport dynamics, they have been used to describe transport dynamics in complex
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systems which are governed by anomalous diffusion and non-exponential relaxation pat-
terns [3]. Moreover, they are also used in finance, engineering and physics (see [4–6] and
references cited therein).

In this paper, we consider the following space fractional diffusion equation





∂u(x,t)

∂t
=−K(−∆)α/2u(x,t)+ f (x,t,u), (x,t)∈ (a,b)×(0,T],

u(x,0)=u0(x), x∈ [a,b],
(1.1)

with the homogeneous Dirichlet or homogeneous Neumann boundary conditions. Here
K>0 is the conductivity or diffusion tensor, and (−∆)α/2 is the fractional Laplacian op-
erator [7] with 1<α<2. The function f = f (x,t,u) denotes the nonlinear source term.

There are many numerical methods to discretize the fractional Laplacian operator of
problem (1.1). However, fractional differential operator is non-local red operator, which
generates computational and numerical difficulties that have not been encountered in
the context of the classical second-order diffusion equations. For space-fractional dif-
fusion equations, numerical methods often generate full coefficient matrices with com-
plicated structures [8–11]. In this paper we use Fourier spectral methods [12-14] to dis-
cretize the space-fractional derivative. This approach gives a full diagonal representation
of the fractional operator and achieves spectral convergence regardless of the fractional
power in the problem. Meanwhile, the application to high spatial dimensions is the same
as the one-dimensional problem. For the temporal discretization, based on Chebyshev
nodes [15, 16], the second-order Crank-Nicolson (CN) method and third-order implicit-
explicit (IMEX) Runge-Kutta method [17] are used on the Chebyshev grids, respectively.
Numerical experiments in Section 3 show that the time accuracy using Chebyshev grids
is more accurate than using uniform grids.

The outline of this paper is as follows. In Section 2, three collocation/spectral nu-
merical schemes are given for the space fractional diffusion equation (1.1). In Section 3,
three numerical examples are carried out to verify the high efficiency of the proposed
method, including the space-fractional Allen-Cahn equation in two dimensions. Finally,
conclusions are drawn in Section 4.

2 High-order accurate schemes

In this section, we present three numerical schemes to simulate the asymptotic behavior
of solution for the space fractional diffusion equation (1.1). The proposed schemes are
based on Fourier spectral method in space and the collocation technique in time. In
order to simplify the notations and without lose of generality, we only present numerical
schemes for the one-dimensional space-fractional diffusion equation.


