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Abstract. Flow inside a lid-driven cavity (LDC) is studied here to elucidate bifurcation
sequences of the flow at super-critical Reynolds numbers (Recr1) with the help of ana-
lyzing the time series at most energetic points in the flow domain. The implication of
Recr1 in the context of direct simulation of Navier-Stokes equation is presented here for
LDC, with or without explicit excitation inside the LDC. This is aided further by per-
forming detailed enstrophy-based proper orthogonal decomposition (POD) of the flow
field. The flow has been computed by an accurate numerical method for two different
uniform grids. POD of results of these two grids help us understand the receptivity
aspects of the flow field, which give rise to the computed bifurcation sequences by un-
derstanding the similarity and differences of these two sets of computations. We show
that POD modes help one understand the primary and secondary instabilities noted
during the bifurcation sequences.

AMS subject classifications: 65M12, 65M15, 65M60, 76D05, 76F20, 76F65

Key words: Lid driven cavity, POD, POD modes analysis, DNS, multiple Hopf bifurcation, polyg-
onal core vortex.

1 Introduction

The 2D flow in a square LDC (of side L) is a canonical problem to study flow dynamics
numerically for incompressible Navier-Stokes equation due to its unambiguous bound-
ary conditions and very simple geometry. The flow is essentially shear-driven, with the
lid given a constant-speed translation (U), giving rise to corner singularities on the top
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wall, as depicted in the top frame of Figure 1. Such singularity gives rise to Gibbs’ phe-
nomenon [1, 5], which is milder for low order methods [16, 29]. Low order highly diffu-
sive methods [6,16] are incapable of computing unsteady flows at high Reynolds number
(Re=UL/ν, where ν is the kinematic viscosity). In Ghia et al. [16], results for a wide range
of Re up to 10000 are presented as steady flow. However, numerical results obtained
by high accuracy combined compact difference scheme indicate creation of a transient
polygonal vortex at the core, with permanent gyrating satellite vortices around it [38,42],
for the same Re. It is well known that compact schemes for spatial discretization behave
properly as compared to other methods, and Gibbs’ phenomenon [35] is not experienced
for the singular LDC problem due to numerical smoothing of the derivatives near the
Nyquist limit [31, 39].

Steady solutions have been reported [14, 16] for Re far exceeding the values reported
in the literature for the first Hopf Bifurcation (Recr1). Unsteady flows have been obtained
as a solution of bifurcation problem [26, 43], by studying linear temporal instability of
the steady solution obtained numerically. Simulations of full time-dependent Navier-
Stokes equation [25, 38] reveal that the flow loses stability via Hopf bifurcation, as Re
increases. Critical Re and frequencies obtained from DNS and eigenvalue analysis do
not match. Such differences are also noted for different DNS results. However, DNS
approach is preferable, due to its superiority of spatio-temporal multi-modal analysis
over normal mode analysis of eigenvalue approach. In the latter, one postulates explicitly
that all points in the domain have identical variation with respect to time. This is strictly
incorrect, as one is dealing with space-time dependent growth of disturbances during the
onset of unsteadiness.

It is shown [25, 41, 42] that Recr1 depends upon accuracy of the method and how the
flow is established in DNS. Impulsive start of the flow triggers all frequencies at the onset
and hence preferred [38, 42]. Obtaining final limit cycle at one Re from the limit cycle
solution from another Re [25] is inappropriate [22]. First Hopf bifurcation obtained by
DNS is dependent upon source of numerical error, mainly on the aliasing error for flow
inside LDC [42]. This also depends upon the discretization, which in turn determines the
creation of wall vorticity. A finer grid will create larger wall vorticity, but will have lesser
truncation error. For the same numerical method, using same time step, a finer grid will
have lesser aliasing and truncation errors, and hence numerical Recr1 will be higher for
finer grid. However, this can also be studied with the help of explicit excitation to show
the near universality of Recr1.

Linear instability of equilibrium flow and DNS have been used to evaluate the onset
of unsteadiness, i.e., obtaining Recr1 for LDC. These methods yield values of Recr1 differ-
ently. For example, Recr1 =8018 in [2] and 8031.93 in [28] have been reported. Cazemier
et al. [8] reported Recr1 at 7972 using a finite volume method. In Bruneau and Saad [6],
the critical Re is suggested to be in the range of 8000 ≤ Recr1 ≤ 8050, obtained using a
third order upwind finite difference scheme. The authors do not provide any bifurcation
diagram to substantiate this observation. Sengupta et al. [41] have described multiple
Hopf bifurcations, showing the first one at 7933 and the second at 8187, using uniform
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(257×257) grid, with these values obtained from the FFT of vorticity time series. Osada
and Iwatsu [25] have identified this value at 7987 ± 2%, obtained using compact scheme
on non-uniform (128×128) and (257×257) grids. However, the authors do not produce
any evidence for grid independent data. Shen [44] reported Recr1 in the range of 10000 to
10500 obtained using partial regularization of top-lid boundary conditions. Poliashenko
and Aidun [26] on the other hand reported a value of Recr1 = 7763±2% using a com-
mercial FEM package. Using the present method [41] with a (257×257) grid, a value of
Recr1≈8665 has been reported by Lestandi et al. [22], for the case of no explicit excitation
applied. A major difference is that computations for all the cases presented here have
been performed following an impulsive start.

The point located at (x = 0.95,y = 0.95) is used here for sampling the data, which
is very close to the singularity at the top right corner, and will log larger value of dis-
turbances [22, 41, 42]. A recent study [22] highlights aspects of computing flow inside
LDC based on study of time series at this point. Although, it is a valid way of study-
ing the flow dynamics in LDC, it is desirable to use a global flow analysis tool like POD,
which provides spatio-temporal information for the full domain. POD was introduced by
Kosambi [21] to project a stochastic field on to a finite set of deterministic basis functions
in the most optimum way possible. POD is also known as Karhenen-Loève decompo-
sition, principal component analysis, etc. This method requires solving an optimization
problem of variational calculus, whose discrete version is a linear algebraic eigenvalue
problem that decomposes a stochastic field into a set of eigenfunctions. Once the eigen-
values and eigenfunctions are obtained, one can obtain the time dependent amplitude
functions, which apportion disturbance field into different eigenmodes.

There are many versions of POD reported in the literature. The eigenvalues may be
obtained through a variety of methods including direct [9] and iterative solvers such as
a Lanczos procedure [34], with or without re-orthogonalization, as given by Cullum and
Willoughby [10]. One of the advantage is that this method can be used locally, in a small
zone of investigation, with the number of eigenvalues depending on the total number of
points in that small part of zone investigated.

However, even such a local analysis can be very resource-intensive. Thus, one uses
instead the alternative method of snapshots proposed by Sirovich [45]. In this case, the
number of eigenvalues depends upon number of snapshots used for the investigation.
The popularity of this method rests with the use of limited number of snapshots, thereby
making the method very efficient. Like the classical method, the problem of optimiza-
tion in projection used for method of snapshots also involves obtaining two-point cor-
relation functions. POD with method of snapshots have been used in fluid mechan-
ics originally with the idea of applying it to turbulent flows [19], with the number of
modes decided upon capturing a very high percentage of kinetic energy. This has been
followed in many early attempts [8, 11, 23, 24] to build POD based reduced order mod-
els (ROMs), where primitive variable formulations have been used to convert the gov-
erning PDEs into a set of coupled ODEs for the amplitude functions. In doing so, the
pressure gradient terms are usually omitted. This is avoided in an alternative approach,
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where stream function -vorticity formulation is used for the governing 2D Navier-Stokes
equation and the projection onto a deterministic basis is sought in capturing maximum
enstrophy [33, 34, 36, 37, 40]. This does not entail omission of pressure information, as
vorticity transport equation is not directly coupled to pressure. Also, in this approach
of using DNS, one directly obtains the amplitude functions up to the desired numbers
with enhanced accuracy. This helped classifying POD modes based on the properties
of the amplitude functions [40, 41], in terms of regular and anomalous modes. In [40],
the POD modes have been related with the instability modes for the first time, ready-
ing the field of flow instability study by POD analysis. The regular POD modes occur
in pairs for the amplitude functions, separated by quarter cycle and the resultant insta-
bility modes obey the Stuart-Landau equation [30]. The anomalous modes, on the other
hand do not obey Stuart-Landau equation. Also, Stuart-Landau equation is of use for
fluid dynamic system with a single dominant mode. Hence, an augmented eigenfunc-
tion approach due to Eckhaus [13] has been used in instability studies of fluid dynamic
system with multiple modes. The resultant governing equations for instability modes
have been termed as Stuart-Landau-Eckhaus equations. This approach of obtaining POD
eigenfunctions and amplitude functions in describing nonlinear instability of fluid flow
has been described in [32] and is routinely used for incompressible flows [36,37]. In [24],
the authors devised a new POD mode which was obtained through a Galerkin projection
on Reynolds-averaged Navier-Strokes (RANS) equation, and called it a shift mode.

Here, enstrophy is preferred over those in [19,24,27,45], where kinetic energy is used
for POD analysis. In vortex dominated inhomogeneous flows, rotational energy is a bet-
ter descriptor of POD over translational kinetic energy, as highlighted in [30, 33, 40]. Au-
thors in [41], used enstrophy based POD approach to study both external and internal
flows to show universality of POD modes in terms of amplitude functions.

The paper is formatted in the following manner. In the next section, we provide a very
brief recap of the governing equation and numerical methods used. In Section 3, with the
help of computed Navier-Stokes Equation (NSE) solution, we characterize the flow field
by bifurcation analysis. POD as a tool has been used in Section 4, to relate vorticity
dynamics in the LDC flow field about the sensitivity to grid resolution by solving NSE
using two grids in describing primary and secondary instabilities. We close the paper by
providing the conclusions arising out of this research.

2 Governing equations and numerical methods

Direct simulation of the 2D time-dependent flow is carried out by solving NSE in stream
function-vorticity formulation given by,

∇2ψ=−ω, (2.1)

∂ω

∂t
+(~V ·∇)ω=

1

Re
∇2ω, (2.2)
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where ω is the only non-zero, out-of-plane component of vorticity for the 2D problem
considered here. The velocity is related to the stream function as ~V =∇×~Ψ, where
~Ψ = [0,0,ψ]T . The governing equations are non-dimensionalized with L as the length
scale and the constant lid velocity, (U), as the velocity scale, so that the Reynolds num-
ber is Re= UL

ν . Consequently, computational domain is the unit square, while the time
evolution is continued up to desired flow development. Present formulation is appropri-
ate for 2D incompressible flows due to its inherent satisfaction of solenoidality condition
for velocity and vorticity. This allows one to circumvent the pressure-velocity coupling
problem, which is otherwise an important issue in primitive variable formulation. Iden-
tical numerical methods have been used previously of the flow for Re=10000 in [38, 42]
and is not repeated here.

Eqs. (2.1) and (2.2) are solved using uniform grid of a Cartesian frame with the origin
at the bottom left corner of the LDC. A schematic of the computational domain is shown
in Figure 1(a). The flow field is subjected to the following boundary conditions. On all
the four walls of LDC, ψ= constant is prescribed, which satisfies no-slip condition and

helps evaluating the wall vorticity as ωb =− ∂2ψ
∂n2 , with n as the wall-normal coordinate

chosen for the four segments of the LDC. This is calculated using Taylor series expansion
at the walls with appropriate velocity conditions on the boundary segments, as given for
the top wall by,

ψ(x,L−dy)=ψ(x,L)−dy
∂ψ

∂y
+

dy2

2

∂2ψ

∂y2
+O(dy3).

Since, U= ∂ψ
∂y at the top wall, the wall vorticity can be written in truncated series form as

ωb(x)=
2

dy2

[

ψ(x,L)−ψ(x,L−dy)−dy

]

. (2.3)

In Equation (2.3) on the right hand side, the last term is due to the top lid continuously
moving at the constant speed, U, which is taken equal to one in non-dimensional form.
One can similarly obtain the expression for the wall vorticity at other wall-segments,

where we use
∂ψ
∂n =0 identically.

To solve the discretized form of Eq. (2.1), Bi-CGSTAB method has been used here,
which is a fast and convergent elliptic PDE solver [47]. The convection and diffusion
terms of Eq. (2.2) are discretized using the NCCD method [38, 42] to obtain both first
and second derivatives, simultaneously. For time advancing Equation (2.2) four-stage,
fourth-order Runge-Kutta (RK4) method is used, that is tuned to preserve physical dis-
persion relation. The NCCD scheme has been analyzed for resolution and effectiveness
in discretizing diffusion terms [38, 42]. It is noted that the NCCD scheme is particu-
larly efficient, providing high resolution and effective diffusion discretization, as also
has been shown with the help of model convection-diffusion equation [46]. Addition-
ally, it has built-in ability to control aliasing error. The only drawback of NCCD scheme
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is that it can be used only with uniform structured grids. All computations are per-
formed with non-dimensional time-step of ∆t= 10−3. Additional details of the method
for this problem is in [22], which explained the reason for the location where time-series
for vorticity is stored for analysis. This is shown in Figure 1(a) as P, with the coordinate
(x=0.95,y=0.95).
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Figure 1: (a) Schematic view of the LDC problem and (b) time series of the vorticity taken at point P (0.95,
0.95) obtained using (257×257) grid points for Re=9800.

3 Flow dynamics in LDC: Bifurcation sequences

To understand how a steady flow inside the LDC becomes unsteady with increasing Re
above critical value, we record the time variation of the vorticity in the domain at point P,
as shown in Figure 1(b). This is a typical time series, when we use the uniform grid with
(257×257) points, for Re=9800 with the flow unexcited.

The used combined compact difference (CCD) scheme has near-spectral accuracy
and it has been explained in [38, 42], the onset of unsteadiness is due to aliasing error
predominant near the top right corner of the LDC, while the truncation, round-off and
dispersion errors are extremely negligible. To avoid the issue of lower numerical exci-
tation in the present work [38, 41, 42], a pulsating vortex is placed having the form at
r0=(0.015625,0.984375) whose spread is defined by α=0.0221 as given in the following,

ωs=A0(1+cos(π(r−r0)/0.0221))sin(2π f0t) for (r−r0)≤0.0221,
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Figure 2: Variation of the equilibrium amplitude (Ae) with Reynolds number (Re) for the two grids, with
(257×257) and (513×513) points. Note the points (P1, P2) and (Q1, Q2) have similar dynamics, as shown
later. Additional points O and S represent the onset of unsteadiness (Re = 8670) and secondary instability
(Re=9800) of the flow field computed using (257×257) grid points.

where in the presented results here we have taken f0=0.41 for different amplitude cases.

From Figure 1(b) one notices a primary instability as marked in the frame, following
subsidence of the initial transient. After this instability, one notices a regular time varia-
tion of vorticity (almost like a limit cycle, with slowly increasing amplitude). However,
after some time, one notices rapidly growing envelope amplitude, caused by a secondary
instability, following which one notes a final stable limit cycle, settling down to an equi-
librium peak to peak amplitude indicated as 2Ae.

Figure 2 shows the variation of the equilibrium amplitude Ae with Re, for simula-
tions performed using two grids, with (257×257) and (513×513) points. The triangles
correspond to the equilibrium amplitude obtained using (257×257) grid points, except
the highest amplitude case of A0=10 for this grid with open circle, for the lowest super-
critical case. It shows the onset of unsteadiness for this grid to occur between Re=8660
and 8670 for the case of A0 = 0, with the point marked as ’O’ in the figure. The points
shown by filled rhombus and square are obtained using the (513×513)-grid points. For
the refined grid, onset of unsteadiness occurs for Re slightly lower than 9450, for the case
of A0 = 0. The (257×257) grid results also show a dip in Ae around Re = 9400, which
is identified as the second bifurcation point [22] for this grid. In this reference, differ-
ent bifurcation sequences are identified by plotting A2

e versus Re and the segments are
identified by straight lines with different slope for the unexcited cases. This stems from
the literature which identifies bifurcation with disturbance amplitude evolution follow-
ing Stuart-Landau equation [30] to occur quadratically with respect to Reynolds number.
However, this equation is valid only if there is a single dominant mode for the distur-
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bance field. It is understood that for circular cylinder, presence of many POD modes and
instability modes necessitates adoption of Stuart-Landau-Eckhaus (SLE) equation to ac-
count for multi-modal interactions [40], which show quadratic variation of disturbance
with Re merely as an assumption. In Figure 2, for the coarser grid we have identified ’S’
as the point (Re=9800) displaying secondary instability, as already shown in Figure 1(b).

For the finer grid, we note that the primary Hopf-bifurcation between Re=8660 and
8670 is bypassed. For this grid, the second and third bifurcations occur for Re = 9600
and 10000, respectively. Following the second bifurcation, we notice three data points
with the middle one identified as P1 in Figure 2, which show similar variation as for
the (257×257) grid over an extended range of Re. Later on, we compare a representative
point at P2 with P1. A similar qualitative variation between the two grids are noted which
originate in a sequence starting from Q1 and Q2, which are also compared later.

Few of the distinctive features of Figure 2 are the following: (a) The used methods
for space-time discretization are so accurate that the onset of unsteadiness in the flow
field is delayed, with finer grid. Even for (257×257)-grid, the onset is delayed up to Re=
8670. This has been explained here by performing the computations for lower Re, with an
excitation applied at a single point by a pulsating vortex, with frequency of excitation of
0.41, which is distinctly different from the natural Strouhal number on 0.43. More details
about the excitation is given in [22]. Following this process of excitation, one notices from
Figure 2 that the critical Re for this case can be brought down to between 8020 and 8025.
(b) For the finer grid of (513×513) points, the first critical Reynolds number is noted
between 9400 and 9425, for the case of no excitation. With excitation this can be brought
down to as low as Re= 8250 (as shown in the figure). (c) For Re above 10400 with the
(257×257)-grid, one notices two branches of solution, as shown in the figure. The lower
branch (marked as U-branch) is essentially unstable and the upper branch is the stable
branch, named as the S-branch. Upon application of slightest perturbations, the solution
on the U-branch jumps to the S-branch.

4 Proper orthogonal decomposition

4.1 Method overview

Here, we use the enstrophy-based POD, which is preferred over those in [19, 24, 45],
where kinetic energy-based POD analysis have been performed. In vortex dominated
flows, which are neither homogeneous nor periodic, rotationality is more important and
enstrophy is a better descriptor of POD over translational kinetic energy, as has been
used in [32, 36, 37, 40, 41]. Authors in [41], used enstrophy based POD approach to study
both external and internal flows to show universality of POD modes in terms of ampli-
tude functions. In [24], the authors devised a reduced order model (ROM) that relied on
POD mode and Galerkin projection of RANS solution. Thus, POD analysis is noted to be
useful in studying internal and external flows of different kinds.

POD technique introduced among others by Kosambi [21] for a random field vi(~x,t),



158 Lucas Lestandi et al. / J. Math. Study, 51 (2018), pp. 150-176

where it is projected onto a set of deterministic vectors ϕi(~x), so that 〈|(vi,ϕi)|2〉/||ϕi||L2
is

maximum. The outer angular brackets signify time-averaging and inner brackets signify
an inner product. The computation of ϕi(~x) can be posed as an optimization problem in
variational calculus,

∫

Ωx

Rij(~x,~x′) ϕj(~x
′)d~x′=λ ϕi(~x). (4.1)

The kernel of the above is the two-point correlation function, Rij = 〈vi(~x,t)vj(~x
′,t)〉 of

the random field. It is noted [32] that classical Hilbert-Schmidt theory applies to flows with
finite energy, and, therefore, denumerable infinite orthogonal POD modes can be computed. Fur-
thermore, Hilbert-Schmidt theory is applicable for flow instabilities, as the disturbance
field derives its energy from the equilibrium flow. Disturbance vorticity field is thus,
represented in POD formalism as

ω′(~x,t)=
∞

∑
m=1

am(t) ϕm(~x), (4.2)

where am(t) represents the amplitude function, which describes the spatio-temporal vari-
ation of the modal amplitude and ϕm(~x) is the corresponding spatial eigenfunction. It
should be noted that the eigenfunctions are orthogonal [9], additionally they are taken
of unit norm for practical reasons. Thus, these form an orthonormal basis [3] on which
ω′ can be projected, as in Eq. (4.2). Then, one can compute the corresponding amplitude
functions am(t) easily through spatial inner product

∀m∈N
∗,am(t)=(ω′,ϕm)L2(Ωx)=

∫

Ωx

ω′(~x,t)ϕm(~x)d~x,

which emphasize the spatio-temporal nature of the POD. Equation (4.1) is an eigenvalue
problem in the integral form, which becomes intractable even for moderate grid reso-
lution. To overcome this difficulty, Sirovich [45] introduced the method of snapshots,
which has an advantage of dealing with smaller data sets in multiple dimensions. In-
stead of solving Eq. (4.1), it is chosen to solve the equivalent problem on qm which yields
the same decomposition,

∫

Ωt

C(t,t′)qm(t
′)dt′=λmqm(t), (4.3)

where Ωt is the time interval and the autocorrelation function is defined as

C(t,t′)=
1

T

∫

Ωx

ω′(~x,t)ω′(~x,t′)d~x.

Once Eq. (2.2) has been solved, we can recover the spatial POD modes (ϕm)m due to
the following projection

ϕm(~x)=
∫

Ωt

qm(t)ω
′(~x,t)dt. (4.4)
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Finally, (ϕm) are normalized and the norm is passed to am =
√

λmqm. This method pro-
duces the same basis that one would obtain through classical POD. The strength of the
snapshot POD lies in the small size of the snapshots of DNS data, where Nt the number of
snapshots (time frames) that is lot smaller than the number of grid points NX . Discretiza-
tion of the above operators is performed by trapezoidal integration rule for time (as well
as space) with weights at time point i noted mi = dt/T, half of that for i= 1 and i= Nt .
The discrete version of the POD decomposition reduces to a simple matrix eigenvalue
problem [C̄]{q}=λ{q}, where [C̄] is given by

C̄ij=
√

mimj

∫

Ωx

ω′(~x,ti)ω′(~x,tj)d~x. (4.5)

The eigenvalues λ and eigenvectors {q} of [C̄] are computed using LAPACK eigen-
value problem solver for symmetric matrices (DSYEV). It should be noted that the cal-
culations account for the differences between discrete L2 inner product and vector scalar
product. Consequently an extra step is required that reads qm = m−1{q} where m−1

i =
1/mi.

In this paper the maximum number of snapshots is Nt = 1000 while the number of
grid points is NX = 66049 or 263169 (according to grid size), thus only the method of
snapshots is used. Moreover, the spatial POD modes will be referred to as eigenfunctions
for historical reasons while (am) will be called amplitude function or time POD modes.

4.2 DNS data analysis: limit cycle

Here we use POD analysis to characterize flow fields obtained by the two grids. In Figure
3, the eigenfunctions obtained following the method of snapshots for the POD analysis
is shown for the points, P1 and P2, shown in Figure 2 for Re=9700. We display only the
first twelve modes obtained for the two grids in Figures 3 and 4. It is noted that despite
the differences in Figure 2 for the equilibrium amplitude and the associated maximum
vorticity values in the domain, the first eight eigenfunctions have remarkable similar-
ities, indicating the qualitative similarities of the associated flow fields obtained using
two grids with significantly different points. The eigenfunction plots of Figures 3 and 4
also show a definitive pattern, with the first and second modes are regular modes [41],
defined for classification of POD modes. In this case, one notices three pairs of similar
vortical structures with opposite signs. In the same way, the third and fourth modes are
composed of six such pairs; fifth and sixth modes similarly have nine pairs of structures.
This multiplicity of vortical structures are extended to higher mode pairs also. However,
their contributions are negligibly small in terms of enstrophy content, as the first eight
modes in Figures 3 and 4, account for nearly all of the enstrophy contents for both the
grids.

Such similarities are furthermore emphasized in Figure 5, showing the cumulative
enstrophy for the pairing of points shown in Figure 2. For example, in discussing the flow
dynamics for points P1 and P2, it has been mentioned that the flows would be similar. This
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Figure 3: Eigenfunctions of POD modes for Re=9700 with (257×257) grid. These are for the two points (P1,
P2) in Figure 2. (ϕm)m isolines are plotted in the [−0.5,0.5] range with 0.01 spacing. Solid lines are positive
values, while dashed lines are negative value contour. (Cont.)

is clearly brought out in the eigenfunction plots of Figures 3 and 4 and the cumulative
enstrophy shown in the top frames of Figure 5. Similarities for the points Q1 and Q2 have
been suggested, while discussing the bifurcation diagram (Figure 2) and the cumulative
enstrophy plot for this case shown in the bottom frame of Figure 5, strongly supports this.
We also note that keeping the Reynolds number same with the two grids alone, does not
ensure similarity of the flow, as noted from the cumulative enstrophy plot for Re=10000
in the middle frame of Figure 5.

The POD amplitude functions, their representative DFT plots are shown in Figures
6 and 7 for Re = 9700 case, obtained using the two grids. These are shown pairwise,
when the two constituents differ by a phase shift of quarter cycle. In Figure 6, amplitude
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Figure 4: same modes with (513×513) grid points.

functions are shown for P1 obtained using (513×513) grid. The FFT of these time series
is shown in the bottom frames for each pair. The top left frame indicates the fundamental
frequency for the first and second modes ( f0 = 0.43), while the second, third and fourth
mode pairs are the super-harmonics of this fundamental frequency (at 2 f0,3 f0,4 f0). These
amplitude functions and the frequencies are identical for both grids, as can be seen for
the amplitude functions and their DFT shown for the point P2 obtained using (257×257)
grid. Once again the comparison between Figures 6 and 7 supports the view that the flow
dynamics is similar for P1 and P2.

Next, we investigate the flow fields for the points Q1 (Re=10000) and Q2 (Re=10700)
of Figure 2, in Figures 8 and 9, respectively for the two grids with the help of POD eigen-
functions. Previously, we have noted that the flow fields for these points obtained by the
two grids will be similar, while discussing the bifurcation diagrams in Figure 2. Now
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Figure 5: Cumulative enstrophy plots for the two grids shown for the indicated Reynolds number, for the
enstrophy based POD.

the plotted eigenfunctions for the first twelve modes in Figures 8 and 9 are also seen to
be similar. This, added with the cumulative enstrophy plots shown in the bottom frame
of Figure 5, strongly support the view that the flow fields are indeed similar. This also
shows that the view provided by the bifurcation diagram is a better descriptor of simi-
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Figure 6: Amplitude of POD modes and its DFT for Re=9700 obtained for the (513×513) grid for the point
P1 in Figure 2.

larity of flow field in the diagram, whenever A2
e plotted against Re show identical slopes.

The eigenfunctions have also similarity with the eigenfunctions shown in Figures 3 and
4 for the first two pairs, with respect to qualitative features. The higher modes are dis-
tinctly different in Figure 8 and 9, due to the flow fields belonging to different branches
of the diagrams, as compared to the cases shown in Figures 3 and 4. Figures 8 and 9
belong to branches in which the instability is higher due to multiple dominant frequen-
cies interacting [22]. That causes the enstrophy to be distributed over larger number of
modes, i.e., one should be interested in the higher modes beyond the number eight, as
was the case for the lower Reynolds number. Even the symmetry for the eigenfunctions
noted for Re= 9700 is lost from fifth mode onwards since two or more physical modes
are interacting with the primary POD mode.

The features of eigenfunctions for Q1 and Q2 are also reflected in the amplitude func-
tions shown in Figures 10 and 11. The first pair of amplitude functions displays identical
peak for these two grid results, which is different from the fundamental frequency ( f0)
noted in Figures 6 and 7 for Re= 9800 case. The second pair of amplitude functions in
Figures 10 and 11 are not the super-harmonic of the fundamental seen for the first pair
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Figure 7: Amplitude of POD modes and its DFT for Re=9700 obtained for the (257×257) grid for the point
P2 in Figure 2.

of amplitude function. Thus, this segment of bifurcation diagram for Figures 10 and 11,
is qualitatively different from the lower Reynolds number parts shown in Figures 6 and
7. Between the two points Q1 and Q2, the third and fourth modes have some differences
at the lower frequencies, otherwise other significant peaks are collocated. The fifth and
sixth amplitude functions of POD modes again have the same value of frequency for the
peak, as is noted for the first pair. All the other modes have qualitative similarity between
amplitude functions for points Q1 and Q2, and with the exception of eleventh and twelfth
modes, all the modes appear as wave-packets, which have been called as the anomalous
mode of second kind [30, 41].

4.3 DNS data analysis: primary and secondary instabilities

So far, we have reported POD analysis of flow fields after the time series reaches stable
limit cycle for the sampling point (x=0.95,y=0.95). We have previously reported DNS-
based study of Hopf bifurcations using the (257×257) grid in [22], providing the nu-
merical details of the methodology. Here we have studied the dynamics of the unsteady
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Figure 8: Eigenfunctions of POD modes for Re=10000 obtained with (513×513) grid for the point Q1 in Figure
2.

flow field using two different grids, with the intention of highlighting the mathematical
physics of this canonical problem with POD as the analysis tool. It is necessary also to
characterize the flow during primary and secondary instabilities.

For this purpose, in Figure 12 we show the POD eigenfunctions obtained without
excitation during the primary instability stage for Re=8670 obtained using the (257×257)
grid, which is indicated as ’O’ in Figure 2. The first Hopf bifurcation obtained for this grid
occurs between 8660 and 8670. Thus, this Re is a super-critical case that displays linear
instability during t=900 to 1100. The eigenfunctions show various polygonal core-vortex.
For example, the eighth, fourteenth and seventeenth modes display triangular vortex at
the core, as was shown for the flow field in [38,42] for Re=10000. Present simulation and
its POD confirms the presence of triangular core vortex caused by the primary instability.
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Figure 9: Eigenfunctions of POD modes for Re=10700 obtained with (257×257) grid for the point Q2 in Figure
2.

This has also been advocated as the proof of accuracy of numerical schemes in [22], in
capturing the triangular vortex at the core, as has been experimentally shown in [4,7,20].

For the eigenfunctions shown in Figure 12 for Re=8670, the corresponding amplitude
functions are shown in Figure 13. It is readily apparent that the first two modes form
the regular pair [41], while the third mode is the anomalous mode of first kind; with
fourth and fifth modes again form a regular pair, but modulated with higher frequency
components. The sixth and seventh modes appear as wave-packets and hence, would be
called the anomalous mode of second kind. The eighth and ninth modes are similar to
fourth and fifth pair, i.e., regular modes which are highly modulated. The tenth mode
is an anomalous mode of first kind, similar to the third mode. It has been explained in
[30,40] that the anomalous mode of first kind, gives rise to equivalent stress term, like the
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Figure 10: Amplitude of POD modes and its DFT for Re=10000 obtained for the (513×513) grid for the point
Q1 in Figure 2.

Reynolds stress and alters the mean flow. In this respect, the third and the tenth modes
have opposite effects on the mean flow, as is evident from the signs of the amplitude
at the terminal time. One can similarly classify the other modes into these categories
described. However, the sixteenth and seventeenth modes appear as combination of the
two types of anomalous modes described. It is worth remembering that the classification
of POD modes like this is only feasible with DNS and not by RANS [24]. Authors in
this latter reference introduced the so-called shift mode, which possibly happen, if we
time average the anomalous mode of the first kind using URANS approach. One of the
features of the present approach is that one does not require performing time averaged
computations using closure models. Another feature of the anomalous mode of first kind
is the appearance of the eigenfunctions in Figure 12, where one does not notice orbital
motion of the vortices around the core, which gives rise to the polygonal vortex in the
core.

In describing the dynamics of LDC flow in real time plane in [22], it was noted that for
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Figure 11: Amplitude of POD modes and its DFT for Re=10700 obtained for the (257×257) grid for the point
Q2 in Figure 2.

some cases, limit cycle behaviour is noted after the primary instability (as characterized
in Figure 12 and 13), but with slowly varying amplitude of the envelope. Such variations
continue till a secondary instability occurs, following which a stable limit cycle is noted
whose envelope does not change further with time. In the following, we report results of
POD analysis of one such secondary instability noted for Re=9800, point ’S’ in Figure 2.
The representative time series at (x=0.95,y=0.95) has been already shown in the bottom
frame of Figure 1, marking the primary and secondary instabilities. In Figure 14(a) we
show the eigenfunctions obtained by POD analysis performed on data before the begin-
ning of secondary instability during t= 500 to 600. At this stage, most of the enstrophy
is contained in the first few modes and we show eight of these modes in Figure 14(a).
One notices the onset of creation of the orbital vortices in the first six modes. The sev-
enth mode is without any structure and is similar to the eigenfunction for the anomalous
modes in Figure 12. It is the eighth mode that shows the appearance of a large triangular
vortex in the core, with three pairs of orbital vortices surrounding the core.

In Figure 14(b), we show the eigenfunctions for Re=9800 after the occurrence of the
secondary instability during t = 1900 to 2000. The first pair of eigenfunctions display
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Figure 12: Eigenfunctions of POD modes for Re=8670 obtained with (257×257) grid for the point O in Figure
2 during the linear instability stage.
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Figure 13: Amplitude of POD modes and its FFT for Re=10700 obtained for the (257×257) grid for the point
Q2 in Figure 2.

three pairs of orbiting vortices, without any core vortex. This is typical of the behaviour
of POD modes noted in the final limit cycle cases shown for higher Re. For the third and
fourth modes, one notices six pairs of orbital vortices, without any core. The following
two eigenmodes show nine pairs of orbital vortices and that is followed by the seventh
and eighth modes, which show twelve pairs of orbital vortices.

The corresponding amplitudes and the DFT of various eigenmodes (as in Figure 14),
are shown in Figure 15. In frames (a), the plotted amplitudes correspond to eigenfunc-
tions shown in Figure 14(a), in pairwise fashion. One can clearly note that the FFT is
dominated by a single mode and amplitudes are time-shifted by quarter cycle. While
there is a distinct secondary mode, but its amplitude is orders of magnitude smaller. The
third and fourth modes’ amplitude shows the peak which has a value that is twice of
that noted for the first pair. However, this mode-pair also shows modulation in the time
plane, which is due to the secondary peak shown in the FFT, which is the fundamental
for the first and second modes’ amplitude. In the same way, the fifth and sixth modes
have the peak at thrice the value noted for the first pair. The seventh and eighth modes
have no correlation, as noted in Figure 15(a).

In Figure 15(b), we note the amplitude functions corresponding to the eigenfunctions
shown in Figure 14(b), obtained during t= 1900 and 2000, when one is in the final limit
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Figure 14: Eigenfunctions of POD modes for Re=9800 obtained with (257×257) grid during (a) t=500 to 600
before and during (b) t=1900 to 2000 after the secondary instability.

cycle stage. It is interesting to note that the action of the secondary instability is to shift
the fundamental frequency for the first pair (( f0)be f ore=0.60) to a lower value ( f0 =0.43),
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Figure 15: Amplitude of POD modes and its DFT for Re= 9800 using (257×257) grid (a) before [t= 500 to
600] and (b) after [t=1900 to 2000] the secondary instability, for the case of Figure 9.

as noted in the FFT plots. The second and third pair of amplitude functions have peaks
at 2 f0 and 3 f0, respectively. The seventh and eighth modes are characterized by very
high frequency fluctuations, and modulated at moderate frequencies, as a consequence
one can categorize these as anomalous mode of second kind [41]. This phenomenon is
explained by similar amplitudes of the leading peak (4 f0), with the next peak in ampli-
tude (5 f0) that interact to create modulations. This pattern is visible for each final state,
however, it is weaker for the finer grid in Figures 3 and 4.
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5 Conclusions

In the present research, we have used POD to characterize LDC flow for a range of Re
for simulations performed using two grids (257×257) and (513×513) points. The numer-
ical method is well established for similar exercise in [38, 42], where very high accuracy
combined compact scheme have been used. Although, the two grids produce different
bifurcation sequences (in Figure 2), the reason for this is explained in exciting the flow,
as determined by the aliasing error (which reduces with grid refinement), while the wall
vorticity increases with the refined mesh. As a consequence, the relative scaled ampli-
tude of disturbance field is lower for the finer mesh, and that also explains why primary
Hopf bifurcation is delayed for the refined grid. Furthermore, we show that despite dif-
ference in bifurcation sequences in the two grids, the qualitative similarity of flow fields
are noted for points in the bifurcation diagram.

We note that the flow is better characterized by the bifurcation diagram (Figure 2),
rather than Re. The flow in the two grids will be similar when A2

e versus Re curves have
identical slope, even if the Re are different. This is shown first by comparing the POD
modes of the flow field for Re=9700 for the two grids, which is expected from similarity
of Re and the slope of the bifurcation diagram at P1 and P2. The POD eigenmodes are
shown in Fig. 3 and corresponding FFT amplitude functions are shown in Fig. 5 for P1

and P2. This is also supported by comparing two points Q1 and Q2 in Fig. 2, which
correspond to Re = 10000 using the (513×513) grid and Re = 10700 for the (257×257)
grid without excitation. The POD eigenfunctions and amplitudes together with FFT are
shown in Figures 8–11. These observations are strongly supported by the cumulative
enstrophy plots in Figure 5, for these four points, P1, P2, Q1 and Q2.

We also characterize the primary temporal instability without excitation (indicated
by point O in Figure 2) by POD analysis, showing eigenfunctions and amplitudes in Fig-
ures 12 and 13, which shows clearly multi-periodic dynamics of the flow, with a single
dominant fundamental frequency and its super-harmonics. Finally, we characterize the
secondary instability indicated in Figure 1 by showing POD eigenmodes and the corre-
sponding amplitudes in Figs. 14 and 15, during t= 500 to 600 and then during t= 1900
and 2000. These time intervals correspond to before and after the secondary instability
for Re=9800, which has been identified in Figure 1. We note that such secondary instabil-
ity does not occur for all Reynolds number cases, but when it does occur, the effect is to
change the fundamental frequency from a higher value (0.60) to a lower value (0.43). The
eigenfunctions are also completely different, before and after the secondary instability.

This work reports the study of the LDC flow by DNS and resultant Hopf bifurcation
patterns. The added understanding of this flow instability behaviour will allow us to
build reduced order models relying on POD and the bifurcation diagram presented in
Figure 2. It will focus on ranges of parameters for different ROMs, as we have shown
that the nature of the flow changes drastically through Hopf bifurcation process.
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