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Abstract

In this paper, we present a block Lanczos method for solving the large-scale CDT

subproblem. During the algorithm, the original CDT subproblem is projected to a small-

scale one, and then some classical method is employed to solve this small-scale CDT

subproblem to get a solution, which can be used to derive an approximate solution of the

original CDT subproblem. Theoretical analysis of the error bounds for both the optimal

value and the optimal solution is also proposed. Numerical experiments are carried out,

and it is demonstrated that the block Lanczos method is effective and can achieve high

accuracy for large-scale CDT subproblems.
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1. Introduction

Recently several research works have focused on the Celis-Dennis-Tapia (CDT) subproblem;

see [3–5, 21, 25]. The CDT subproblem has the following form:

min
d∈Rn

Φ(d) ≡
1

2
dTBd+ gTd (1.1)

s.t. ‖d‖2 ≤ ∆ (1.2)

‖ATd+ c‖2 ≤ ξ, (1.3)

where B ∈ R
n×n is symmetric, A ∈ R

n×m, g ∈ R
n, c ∈ R

m, ∆ > 0 and ξ ≥ 0. Problem

(1.1)-(1.3) was first proposed in [6], and later it was also used in [18] for equality constrained

optimization to achieve global convergence. Since then, many research works have been devoted

to the theoretical properties of the CDT subproblem; see, e.g. [1,3,4,7–9,11,14,23,29]. A related

problem is the quadratic optimization with two quadratic constraints, which includes the CDT

subproblem as a special case. Theoretical results on this topic are also discussed by many

authors; see [2, 17, 28].

There have been various numerical methods for solving the CDT subproblem. The approach

based on the dual function of the CDT subproblem (1.1)-(1.3) is successfully used in [13, 30,

31]. Another powerful tool for the CDT subproblem is the semidefinite programming (SDP)

relaxation method. Many interesting works on this topic can be found in [2, 5, 25] and the

references therein. Recently, a new algorithm is proposed by Sakaue et al. [21]. Roughly

speaking, this method computes all the Lagrange multipliers of the problem by solving a linear
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eigenvalue problem, obtains the corresponding KKT points, and finds a global solution as the

KKT point with the smallest objective value.

In this paper, we take a different approach from the above-mentioned methods, and consider

a subspace method for large-scale CDT subproblems. Specifically, we propose a Krylov subspace

method to project the CDT subproblem (1.1)-(1.3) to a small-size CDT subproblem

min
x∈Rk(m+1)

Φ̃(x) ≡
1

2
xTTkx+ g̃Tx (1.4)

s.t. ‖x‖2 ≤ ∆ (1.5)

‖ÃTx+ c‖2 ≤ ξ, (1.6)

where Tk = QT
kBQk, g̃ = QT

k g, Ã = QT
kA for some orthonormal basis matrix Qk ∈ R

n×k(m+1).

Then we solve the problem (1.4)-(1.6) by some classical methods to obtain an optimal solution

x∗. Specifically, if Tk is positive definite, Yuan’s dual algorithm [30] is employed in our approach

for (1.4)-(1.6); When Tk is indefinite, we use the SDP relaxation method to solve (1.4)-(1.6).

The approximate solution of (1.1)-(1.3) is set to be dk = Qkx
∗. Numerical results demonstrate

that the optimal solution of the original CDT subproblem can be accurately approximated by

dk. This is an expected result since Krylov subspace method has been proved to be successful

in optimization problems. The readers who are interested in the topic of Krylov subspace

optimization methods can refer to [10, 15].

This paper is organized as follows. In section 2, we present some notations, definitions and

preliminary results used in this paper. The block Lanczos method for the CDT subproblem is

given in detail in section 3. Error bounds on the optimal value are presented in section 4, and

the bounds on the optimal solution are established in section 5. Some numerical experiments

comparing the block Lanczos method with other state-of-the-art algorithms are presented in

section 6. The paper ends with some conclusions and a short discussion on possible future work.

2. Notations and Preliminary Results

In this section, we introduce the notations, definitions, and preliminary results which will be

used throughout the paper. As usual, In denotes the n× n identity matrix, ei denotes the i-th

column of In. We use En
m+ to denote the first m columns of In, and En

m− to denote the last m

columns of In. The notation span{v1, v2 · · · , vk} denotes the linear space spanned by vectors

v1, v2 · · · , vk. For a matrix A, we use R(A) and N (A) to denote the range and the kernel of

A. To simplify our presentation, we shall also adopt MATLAB-like convention to access the

entries of vectors and matrices. For example, (i : j) stands for the set of integers from i to j

inclusive, and A(k : l, i : j) is the submatrix of A that consists of intersections of row k to row

l and column i to column j.

For the CDT subproblem (1.1)-(1.3), let

ξmin := min
‖d‖2≤∆

‖ATd+ c‖2. (2.1)

The following results tell us that ξ > ξmin is the only interesting case. Thus, in the remaining

of the paper, we assume that ξ > ξmin.

Lemma 2.1 ([30, Lemma 2.2]). The following statements hold:

1) if ξ = ξmin, then either there is only one feasible solution of (1.2)-(1.3), or (1.1)-(1.3)

can be reduced to a simpler problem which has the form of (1.1)-(1.2);


