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Abstract

We study a numerical method for solving a system of Volterra-renewal integral equa-

tions with space fluxes, that represents the Chapman-Kolmogorov equation for a class of

piecewise deterministic stochastic processes. The solution of this equation is related to

the time dependent distribution function of the stochastic process and it is a non-negative

and non-decreasing function of the space. Based on the Bernstein polynomials, we build

up and prove a non-negative and non-decreasing numerical method to solve that equation,

with quadratic convergence order in space.
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1. Introduction

In this paper we analyze a numerical method for solving the following system of Volterra-

renewal integral equations with space fluxes [6]

ui(x, t) = fi(x, t) +

S
∑

j=1

qij

∫ t

0

kj(t− η)uj(gj(x, t, η), η)dη, (1.1)

where fi(x, t) =

S
∑

j=1

qijF̃j(gj(x, t, 0))kj(t), (1.2)

for i = 1, . . . S, t ≥ 0 and x ∈ Ω ⊂ R. This system of equations is part of a special form of

the Chapman-Kolmogorov equation for a very wide cathegory of stochastic processes named

Piecewise Deterministic Processes (PDPs) [13, 14].

Briefly, a PDP is generated from the random switching in time of deterministic motions,

taken randomly from a discrete set of given functions. It can be considered as an extension of

the “point processes” used in queue theory and renewal processes [27]. From the theoretical

side, PDPs are known by experts working in probability calculus and operation research (e.g.

see [7, 11, 16]). Within the general category of the PDPs, those characterized by a motion
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switching randomly between deterministic states driven by a semi-Markov process S(t), are

significative. An initial work was made in [22] for Markov processes. A semi-Markov process

is a discrete state and continuous time stochastic jump process where the influence of the past

is erased at the epochs of jumps. These kind of stochastic processes have potentally a huge

amount of applications, we quote Stochastic Hybrid Systems [10, 30] and systems driven by

dichotomous noise [26]. Further applications and details of the definition of these PDPs can be

found in [5,6], here we give some basic definitions in order to provide a little explanation of the

meaning of the terms in Eq. (1.1).

The semi-Markov process is defined as: a discrete Markov process with S states, a stochastic

transition matrix q̂ := {qij}, with 0 ≤ qij ≤ 1,
∑S

i=1 qij = 1, jointly to a set of probability

density functions ki(t) ≥ 0,
∫∞

0
ki(t)dt = 1, describing the statistics of switching time events.

The semi-Markov process S(t) drives the ordinary differential equation

dX(t)/dt = ĀS(t)(X), (1.3)

where the function Āi, is one from a set of {Ā1, . . . , ĀS} given functions. The resulting motion of

the state functionX(t) is a random sample path composed of pieces of deterministic trajectories,

each of them within two switching events of the semi-Markov process.

The meaningful information of a stochastic process is provided by the marginal probability

distribution functions. In this case it is defined as

Fi(x, y, t) := P
(

X(t) ≤ x, y < Y ≤ y + dy, i = S(t)
)

,

i.e. the probability that at the time t the process X(t) is in the dynamical state i, for the

sojourn time y, and its value is not greater than x. Usually, a probability distribution function

is computed by applying Monte Carlo methods directly to the stochastic equation model, like

(1.3). This choice is motivated by the easy implementation of the method on computers, but it

suffers of a notorious slow convergence rate that scales as the inverse of the square root of the

number of samples, although it is robust with respect to the dimension of the spatial domain.

Whenever the governing equation of the distribution function is known, it is possible to solve this

one by deterministic methods [5, 12], and, if needed, Monte Carlo methods for the validation

of theoretical findings (see e.g. [1, 2, 29]). Thus, we search for the probability distribution

function by solving the related Chapman-Kolmogorov equation. In the case of PDP described

by equation (1.3), the Chapman-Kolmogorov assumes the form of a system of hyperbolic partial

differential equations with nonlocal boundary condition [5], or equivalently [6] as the system of

Volterra-renewal equation (1.1)-(1.2). Eq. (1.2) is the initial condition of the problem, where

F̃j(x) represent the distribution functions for the inital data of (1.3). The distribution functions

Fi(x, y, t) have the fundamental properties to be monotonically increasing in x and positive in y

for all t > 0. In order to calculate them, we first solve (1.1)-(1.2), then apply the transformation

Fi(x, y, t) = ui(gi(x, t, t− y), t− y) e−
∫

y

0
λi(τ)dτ , 0 < y < t, (1.4)

where λi(t) = ki(t)/
∫∞

t
ki(τ)dτ and the functions gj(x, t, η) represent the inverse fluxes of

the solutions of the ODE (1.3). Moreover, if we are interested in the probability distribution

without the dependence on the length of the sojourn time y in the state, we integrate it as

follows

Fi(x, t) =

∫ t

0

Fi(x, y, t) dy. (1.5)


