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Abstract

This paper proves the saturation assumption for the nonconforming Morley finite ele-

ment discretization of the biharmonic equation. This asserts that the error of the Morley

approximation under uniform refinement is strictly reduced by a contraction factor smaller

than one up to explicit higher-order data approximation terms. The refinement has at

least to bisect any edge such as red refinement or 3-bisections on any triangle.

This justifies a hierarchical error estimator for the Morley finite element method, which

simply compares the discrete solutions of one mesh and its red-refinement. The related

adaptive mesh-refining strategy performs optimally in numerical experiments. A remark

for Crouzeix-Raviart nonconforming finite element error control is included.
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1. Introduction

The saturation assumption is made in many engineering finite element applications and is

often observed in the asymptotic regime for very fine meshes. The mathematical justification is

less obvious and often requires restrictions on the mesh-refinement and on extra data oscillations

or data approximation terms. Given the two finite element approximations uH and uh with

respect to a coarse mesh TH and its overall refinement Th to the exact solution u, the errors in

the broken energy norm ‖ • ‖NC (with respect to piecewise Sobolev norms) satisfies

‖u− uh‖NC ≤ ̺ ‖u− uH‖NC + C data apx(TH). (1.1)

with positive constants ̺ < 1 and C < ∞. The data approximation terms data apx(TH) read

‖Hα f‖ for the given right-hand side f ∈ L2(Ω) of the PDE in the L2 norm ‖•‖ over the domain

Ω weighted by the piecewise constant mesh-size H . They can be evaluated explicitly and reflect

the mesh-refinement to resolve the local mesh refinement through the variable mesh-size H and
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are of higher order with α = 2 for the Morley and with α = 1 of first-order for the Crouzeix-

Raviart finite element method. Those terms are efficient in the sense data apx(TH) is controlled

by the error ‖u−uh‖NC plus data oscillation terms like ‖Hα(f−Π0f)‖ with the piecewise integral

means Π0f of f . It is known that ‖Hα(f − Π0f)‖ can dominate the error and even uH = uh
is possible for highly oscillating data f ∈ L2(Ω) in a possibly very large computational regime

which makes (1.1) less useful, so this paper aims at applications for piecewise smooth data when

this term is negligible. Saturation results of the type (1.1) are justified for the conforming finite

element method [5, 12], where counterexamples are characterized for very coarse meshes when

(1.1) fails even for a constant right-hand side.

In contrast to [12] for conforming FEMs and second-order problems, this paper asserts

saturation for uniform mesh-refinement rather than for an increased polynomial degree. For

conforming finite elements for the Poisson equation, (1.1) was recently characterized in [5]. It

came as a surprise to the authors that there are no restrictions on the mesh for the noncon-

forming Morley or Crouzeix-Raviart finite element schemes as all. Moreover, for those schemes,

the main result (1.1) of this paper is not restricted to newest-vertex bisection or red-green-blue

refinement, but is also valid for more exotic refinement strategies as long as the family T of trian-

gulations under consideration is shape regular—so unstructured grids with local mesh-refining

are included.

An immediate consequence of saturation is hierarchical error control with a justification via

a triangle inequality. This and (1.1) imply

‖u− uH‖NC ≤ ‖u− uh‖NC + ‖uH − uh‖NC ≤ ̺ ‖u− uH‖NC + η + µ

for the hierarchical error estimator η := ‖uH − uh‖NC and the data approximation term µ :=

C data apx(TH). Since ̺ < 1, this is reliability in the form

‖u− uH‖NC ≤ Crel(η + µ) with reliability constant Crel := 1/(1− ̺). (1.2)

The point is that (1.2) is not an asymptotic result and holds for all coarse meshes TH with

the extra cost of calculating uh with respect to a uniform refinement Th thereof. Moreover,

the regularity of the exact solution does not enter at all and the higher-order term µ depends

explicitly on the data and can be computed. In conclusion, this paper justifies hierarchical error

control in the form

‖u− uH‖NC ≤ C1‖uh − uH‖NC + C2data apx(TH) (1.3)

with universal reliability constants C1 and C2. The estimate (1.3) serves as a basis of further

more local versions of hierarchical error control with less computational costs as outlined in [29]

for conforming finite elements in second-order problems.

The remaining parts of this paper are organized as follows. Section 2 establishes the notation

and the main saturation result (1.1) for the biharmonic equation with homogeneous boundary

conditions and its numerical simulation with the Morley finite element method. The arguments

rely on a new discrete efficiency and a known quasi-orthogonality estimate. Section 3 states the

hierarchical error control (1.3) for the Morley finite element method, which is exemplified in

numerical experiments in Section 4. Some comments on the second-order Poisson model prob-

lem and its numerical simulation with the Crouzeix-Raviart finite element method in Section 5

conclude the paper.

The results are given in two space dimensions for the simplicity of the presentation but are

expected to carry over in higher space dimensions.


