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Abstract

The preconditioner for parameterized inexact Uzawa methods have been used to solve

some indefinite saddle point problems. Firstly, we modify the preconditioner by making it

more generalized, then we use theoretical analyses to show that the iteration method con-

verges under certain conditions. Moreover, we discuss the optimal parameter and matrices

based on these conditions. Finally, we propose two improved methods. Numerical experi-

ments are provided to show the effectiveness of the modified preconditioner. All methods

have fantastic convergence rates by choosing the optimal parameter and matrices.
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1. Introduction

Consider the solution of linear equations of the 2 × 2 block form

Åu =

[
A BT

−C O

] [
x

y

]
=

[
f

g

]
= b, (1.1)

where A ∈ Rn×n is nonsingular, B,C ∈ Rm×n(m < n) are of full row rank, x, f ∈ Rn and

y, g ∈ Rm, BT denotes the transpose of the matrix B. The linear system (1.1) is called a

generalized saddle point problems. Nowadays, the saddle point problems have arisen in a wide

variety of engineering and scientific applications, such as computational fluid dynamics and

mixed finite element approximations of elliptic PDEs and so on, see [1-3]. In addition, the

solutions of the saddle point problems have also been stated and classified in detail [2,3].

As for the linear system (1.1), a large amount of works have been devoted to developing

efficient iteration methods. When Å is nonsymmetric, Krylov subspace methods such as GM-

RES [4,5] are often applied, but such methods tend to converge slowly. In fact, it is often

beneficial to employ a preconditioner in order to improve the convergence rates. And the role

of preconditioners is to reduce the number of iterations required for convergence without in-

creasing significantly the amount of computational costs required at each iteration. Thus some

effective preconditioners are constructed based on matrix splitting iterative methods or matrix

factorizations. They can also be constructed by special structure of the coefficient matrix [6-8].

The above methods are nonstationary iterative methods. Moreover, more stationary iterative

methods are proposed when is symmetric, such as the GSOR method [9], the HSS-like methods
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[10-11], the parameterized inexact Uzawa methods [12-14], and some new combined methods

like the Uzawa-SOR method [15] and the Uzawa-HSS method [16]. These stationary methods

require much less computer memory than nonstationary methods in actual implementation.

However, they may be less efficient in some situations. The iterative methods become more

attractive than the direct methods for solving the saddle point problems, but direct methods

play an important role in the form of preconditioners embedded in an iterative framework even

for some stationary methods.

In this paper, we modify the preconditioner to improve the performance and solve more

general situations for the indefinite saddle point problems in (1.1) by giving a new variable

parameter. At first, the preconditioning matrix is applied, and we get the iteration matrix by

splitting the coefficient matrix, and give the corresponding convergence analysis in brief. Then,

the optimal parameter and matrices are discussed in detail. Finally, we propose and analyze

several methods. The remainder of the paper is organized as follows. In section 2, we modify

the existing preconditioner [20] for the parameterized inexact Uzawa methods and analyze its

convergence. In section 3, we discuss the parameter and matrices by considering Theorem 2.1

presented in section 2, and give the optimal choice. Moreover, two methods are derived by

different choices of the parameter and matrices in section 4 under the assumption of Theorem

3.1. In section 5, we use a numerical example to show the fast convergence of the methods

proposed, which also shows that the modified method are efficient and powerful.

2. Modified Preconditioned Parameterized Inexact Uzawa Methods

First of all, we give a modified matrix P which is nonsingular for preconditioning the linear

system (1.1):

P =

[
R1A

−1 O

B(A−1)TCTR2CA−1 B(A−1)TCTR2,

]

where R1 ∈ R
n×n and R2 ∈ R

m×m are symmetric positive definite. Then we get the new linear

system of the form

Åu = b, (2.1)

where

 L = PÅ =

[
R1 R1A

−1BT

O B(A−1)TCTR2CA−1BT

]
,

d = Pb =

[
R1A

−1f

B(A−1)TCTR2(CA−1f + g)

]
.

Note that

B(A−1)TCTR2CA−1BT = (CA−1BT )TR2(CA−1BT ),

R2 is symmetric positive definite, B,C are of full row rank and A is nonsingular. Then

B(A−1)TCTR2CA−1BT is symmetric positive definite. Because R1 is also symmetric posi-

tive definite, it is easily found that  L is nonsingular. Then we consider the following matrix

splitting:

 L =

[
R1 + Q1 O

Q3 Q2

]
−

[
Q1 −R1A

−1BT

Q3 Q2 −B(A−1)TCTR2CA−1BT

]
,

where R1 + Q1 and Q2 are nonsingular, and Q3 ∈ Rm×n is arbitrary.


