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Abstract

A new polynomial formulation of variable step size linear multistep methods is pre-

sented, where each k-step method is characterized by a fixed set of k− 1 or k parameters.

This construction includes all methods of maximal order (p = k for stiff, and p = k+1 for

nonstiff problems). Supporting time step adaptivity by construction, the new formulation

is not based on extending classical fixed step size methods; instead classical methods are

obtained as fixed step size restrictions within a unified framework. The methods are imple-

mented in Matlab, with local error estimation and a wide range of step size controllers.

This provides a platform for investigating and comparing different multistep method in

realistic operational conditions. Computational experiments show that the new multi-

step method construction and implementation compares favorably to existing software,

although variable order has not yet been included.
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1. Introduction

Linear multistep methods for solving ordinary differential equations

ẏ = f(t, y), y(t0) = 0, t ∈ [t0, tf ], (1.1)

consist of a discretization formula and a pointwise representation of the differential equation,

k∑
i=0

αk−ixn−i = h

k∑
i=0

βk−ix
′
n−i (1.2)

x′n−i = f(tn−i, xn−i). (1.3)

Here xn−i approximates y(tn−i), k is the step number, and the step size is assumed to be

constant, h = tn − tn−1. There is a well established theory for such methods, covering all

essential aspects such as order of convergence and stability, [9, 10]. Other classes of problems,

such as differential-algebraic equations of the form F (t, y, ẏ) = 0, can, at least in principle, be

treated in a similar manner, by replacing (1.3) by F (tn−i, xn−i, x
′
n−i) = 0. Here, a dot denotes

the time derivative of a function as in (1.1), while a prime denotes a sample of the vector
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field that defines the ODE. This distinction is motivated by the fact that in the computational

process, the vector field samples are not located on a single trajectory, whence a dot notation

would be misleading in (1.2)–(1.3).

In practice, a multistep method must be adaptive and use variable step size. There are sev-

eral well-known and efficient implementations. Most of these are based on predictor-corrector

schemes (Adams-Bashforth, Adams–Moulton) for nonstiff problems, or on backward differenti-

ation formulas (BDF) for stiff problems, e.g. the codes VODE [5] and LSODE [12]. All of these

use variable step size as well as variable order.

An established methodology for the construction of variable step size multistep methods,

other than extending classical constant step-size formulas case by case, is still missing, [14].

One of the more general approaches is the one by Nordsieck [11], who developed a theory

showing the equivalence of k-step methods of higher order to polynomials defined by a vector

of dimension k. Although this approach also identifies a set of parameters with each multistep

method, these parameters vary with the step sizes. Among other notable extensions we find

fixed leading coefficient implementations and divided difference implementations. Some have

better stability and computational properties than others, but the theoretical understanding of

variable step size multistep methods remains incomplete.

This is a well recognized problem, and different approaches are taken depending on particular

preferences. In recent years, there has been an increasing interest in solving this problem in

various, demanding special contexts. For example, in [21] the special needs of PDE’s are taken

into account, when explicit and implicit methods are mixed in a splitting scheme. The approach

is to identify an additive decomposition, distinguishing a nonstiff and a stiff part, to be treated

with dedicated methods, while incorporating time step adaptivity. The multistep methods are

extended to variable step size on a case-by-case basis, deriving step size ratio dependent method

coefficients, although the order remains fairly low.

In [8], the special requirements of strong stability preserving schemes are considered. In

nonlinear conservation laws in PDE’s it is essential that the scheme does not add numerical

energy errors; for this reason it is important to maintain interpolation conditions when the step

size varies, and methods are again extended to variable step size on a case-by-case basis. This

is a tedious approach, and the order is severely restricted. Finally in [6], a general attempt is

made to extend multistep methods to variable step size using exponential methods, a technique

that, just like splitting methods, has received new attention in recent years.

These examples are by no means exhaustive, but they point to the diversity of difficulties that

one encounters when multistep methods are the preferred integration methods and adaptivity

is crucial.

The objective of this paper is to develop a new, general methodology for variable step

size multistep methods. Our approach addresses several well known problems and opens a

new avenue of research in adaptive multistep methods. The main idea is to construct multistep

methods that approximate the solution to the ODE by a polynomial, and where specific methods

are characterized in terms of a fixed set of interpolation and collocation conditions. This will

cover all k-step methods of orders p = k and p = k+1; these methods are of maximal order for

stiff and nonstiff problems, respectively.

Our approach is not based on extending classical methods; on the contrary, classical meth-

ods are obtained as fixed step size restrictions within a general interpolation representation,

which, for each method, can be characterized in terms of a set of fixed parameters, even in

the presence of varying step size. Further, the approach provides a continuous extension of


