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Abstract

The implicit convex feasibility problem attempts to find a point in the intersection

of a finite family of convex sets, some of which are not explicitly determined but may

vary. We develop simultaneous and sequential projection methods capable of handling

such problems and demonstrate their applicability to image denoising in a specific medical

imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation,

this work generalizes previous results wherein the implicit convex feasibility problem was

used for cooperative wireless sensor network positioning where sets are balls and their

centers were implicit.
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1. Introduction

In this paper we are concerned with the following “implicit convex feasibility problem”

(ICFP). Given set-valued mappings Cs : Rn → 2R
n

, s = 1, 2, . . . , S, with closed and convex

value sets, the ICFP is,

Find a point x∗ ∈ ∩Ss=1Cs(x
∗). (1.1)

We call the sets Cs(x) “variable sets” for obvious reasons and include “implicit” in this

problem name because the sets defining it are not given explicitly ahead of time. The problem

is inspired by the work of Gholami et al. [21] on solving the cooperative wireless sensor network

positioning problem in R2 (Rn). There, the sets Cs(x) are circles (balls) with varying centers.

A special instance of the ICFP is obtained by taking fixed sets Cs(x) ≡ Cs, for all x ∈ Rn, and

all s = 1, 2, . . . , S, yielding the well-known, see, e.g., [3], “convex feasibility problem” (CFP)

which is,

Find a point x∗ ∈ ∩Ss=1Cs. (1.2)
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The CFP formalism is at the core of the modeling of many inverse problems in various

areas of mathematics and the physical sciences. This problem has been widely explored and

researched in the last decades, see, e.g., [10, Section 1.3], and many iterative methods where

proposed, in particular projection methods, see, e.g., [11]. These are iterative algorithms that

use projections onto sets, relying on the principle that when a family of sets is present, then

projections onto the given individual sets are easier to perform than projections onto other sets

(intersections, image sets under some transformation, etc.) that are derived from the given

individual sets.

Gholami et al. in [21] introduced the implicit convex feasibility problem (ICFP) in Rd

(d = 2 or d = 3) into their study of the wireless sensor network (WSN) positioning problem.

In their reformulation the variable sets are circles or balls whose centers represent the sensors’

locations and their broadcasting range is represented as the radii. Some of these centers are

known a priori while the rest are unknown and need to be determined. The WSN positioning

problem is to find a point, in an appropriate product space, which represents the circles or

balls centers. The precise relationship between the WSN problem and the ICFP can be found

in [21, Section B]. For more details and other examples of geometric positioning problems,

see [20,22].

We focus on the ICFP in Rn and present projection methods for its solution. This expands

and generalizes the special case treated in Gholami et al. [21]. Moreover, we demonstrate the

applicability of our approach to the task of image denoising, where we impose constraints on

the image intensity at every image pixel. Because the constraint sets depend on the unknown

variables to be determined, the method is able to adapt to the image contents. This application

demonstrates the usefulness of the ICFP approach to image processing.

The paper is structured as follows. In Section 2 we show how to calculate projections onto

variable sets. In Section 3 we present two projection type algorithmic schemes for solving

the ICFP, sequential and simultaneous, along with their convergence proofs. In Section 4 we

present the ICFP application to image denoising together with numerical visualization of the

performance of the methods. Finally, in Section 5 we discuss further research directions and

propose a further generalization of the ICFP.

2. Projections onto Variable Convex Sets

We begin by recalling the split convex feasibility problem (SCFP) and the constrained

multiple-set split convex feasibility problem (CMSSCFP) that will be useful to our subsequent

analysis.

Problem 2.1. Censor and Elfving ([13]). Given nonempty, closed and convex sets C ⊆ Rn,

Q ⊆ Rm and a linear operator T : Rn → Rm, the Split Convex Feasibility Problem

(SCFP) is:

Find a point x∗ ∈ C such that T (x∗) ∈ Q. (2.1)

Another related more general problem is the following.

Problem 2.2. Masad and Reich ([31]). Let r, p ∈ N and Ωs, 1 ≤ s ≤ S, and Qr, 1 ≤ r ≤ R,

be nonempty, closed and convex subsets of Rn and Rm, respectively. Given linear operators

Tr : Rn → Rm, 1 ≤ r ≤ R and another nonempty, closed and convex Γ ⊆ Rn, the Constrained


