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Abstract

In this paper, we derive optimal order a posteriori error estimates for the local dis-

continuous Galerkin (LDG) method for linear convection-diffusion problems in one space

dimension. One of the key ingredients in our analysis is the recent optimal superconver-

gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We

first prove that the LDG solution and its spatial derivative, respectively, converge in the

L2-norm to (p+ 1)-degree right and left Radau interpolating polynomials under mesh re-

finement. The order of convergence is proved to be p + 2, when piecewise polynomials of

degree at most p are used. These results are used to show that the leading error terms on

each element for the solution and its derivative are proportional to (p+1)-degree right and

left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG

error estimates, which were constructed by the author in an earlier paper, converge, at a

fixed time, to the true spatial errors in the L2-norm at O(hp+2) rate. Finally, we prove that

the global effectivity indices in the L2-norm converge to unity at O(h) rate. These results

improve upon our previously published work in which the order of convergence for the a

posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2,

respectively. Our proofs are valid for arbitrary regular meshes using P p polynomials with

p ≥ 1. Several numerical experiments are performed to validate the theoretical results.
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1. Introduction

In this paper, we analyze a residual-based a posteriori error estimates of the spatial errors

for the semi-discrete local discontinuous Galerkin (LDG) method applied to the following one-

dimensional linear convection-diffusion equation

ut + cux − kuxx = f(x, t), x ∈ [a, b], t ∈ [0, T ], (1.1a)

subject to the initial and periodic boundary conditions

u(x, 0) = u0(x), x ∈ [a, b], (1.1b)

u(a, t) = u(b, t), ux(a, t) = ux(b, t), t ∈ [0, T ], (1.1c)

where c ≥ 0 is assumed to be a constant and k > 0 is the diffusion constant. For the sake of

simplicity, we only consider the case of periodic boundary conditions. However, this assumption
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is not essential. We note that if other boundary conditions (e.g., Dirichlet or Neumann or mixed

boundary conditions) are chosen, the LDG method can be easily designed; see [18,39] for some

discussion. In our analysis, the initial condition u0(x) and the source f(x, t) are assumed to be

sufficiently smooth functions with respect to all arguments so that the exact solution, u(x, t),

is a smooth function on [a, b]× [0, T ].

The LDG method we discuss in this paper is an extension of the discontinuous Galerkin (DG)

method aimed at solving differential equations containing higher than first-order spatial deriva-

tives. The DG method is a class of finite element methods, using discontinuous, piecewise

polynomials as the numerical solution and the test functions. It was first developed by Reed

and Hill [35] for solving hyperbolic conservation laws containing only first order spatial deriva-

tives in 1973. Consult [24] and the references cited therein for a detailed discussion of the history

of DG methods and a list of important citations on the DG method and its applications. The

LDG method for solving convection-diffusion problems was first introduced by Cockburn and

Shu in [26]. Since then, LDG schemes have been successfully applied to hyperbolic, elliptic,

and parabolic partial differential equations [2–4, 6, 7, 14, 16–18, 25–28, 33, 34, 37, 38], to mention

a few. A review of the LDG methods is given in [10,15,16,22–24].

There are many motivations for using LDG methods. With their carefully devised numerical

fluxes, LDG methods are robust and high-order accurate, can achieve stability without slope

limiters, and are locally (elementwise) mass-conservative. This last property is very useful

in the area of computational fluid dynamics, especially in situations where there are shocks,

steep gradients or boundary layers. Moreover, LDG methods are extremely flexible in the

mesh-design; they can easily handle meshes with hanging nodes, elements of various types and

shapes, and local spaces of different orders. They further exhibit strong superconvergence that

can be used to estimate the discretization errors.

Recent work on the LDG method method for diffusion and convection-diffusion problems

has been reviewed in [13, 39]. In particular, Cheng and Shu [18] studied the superconvergence

property of the LDG method for linear hyperbolic and convection-diffusion equations in one

space dimension. They proved superconvergence towards a particular projection of the exact

solution. The order of superconvergence is proved to be p + 3/2, when p-degree piecewise

polynomials with p ≥ 1 are used. However, the superconvergence rate obtained in [18] is not

optimal. In [7], we constructed and analyzed the global convergence of an implicit residual-

based a posteriori error estimates. We applied the superconvergence results of Cheng and

Shu [18] and proved that these estimates, at a fixed time t, converge to the true spatial error

in the L2-norm under mesh refinement. The order of convergence is proved to be p+ 3/2. We

further proved that the global effectivity indices converge to unity at O(h1/2) rate. In this

paper, we improve upon the results in [7]. Recent optimal superconvergence results are used to

obtain optimal convergence rate in the L2-norm for the a posteriori error estimates and higher

convergence rate for the global effectivity indices.

Recently, Yang and Shu [39] studied the superconvergence of the error for the LDG finite

element method for one-dimensional linear parabolic equations when the alternating flux is

used. They proved that the error between the LDG solution and the exact solution is (p+2)-th

order superconvergent at the Radau points with suitable initial discretization. They also proved

superconvergence towards a particular projection of the exact solution. The order of supercon-

vergence is proved to be p + 2. Their analysis is valid for arbitrary regular meshes and for

P p polynomials with arbitrary p ≥ 1. They performed numerical experiments to demonstrate

that the superconvergence rates are optimal. More recently, Cao and Zhang [13] studied the


