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Abstract

In this paper, a compact finite difference method is presented for solving the initial

boundary value problems for the improved Boussinesq equation with damping terms. The

fourth-order equation can be transformed into a first-order ordinary differential system, and

then, the classical Padé approximation is used to discretize spatial derivative in the non-

linear partial differential equations. The resulting coefficient matrix for the semi-discrete

scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of

convergence, the classical fourth-order Runge-Kutta method is the preferred method for

explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the

method, and various numerical experiments are designed to test the different effects of the

damping terms.
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1. Introduction

The Boussinesq equation was first presented by Joseph Boussinesq in 1873, which is a

fourth-order nonlinear PDE belonging to the Kdv family. This equation mainly describes the

propagation of long waves on the free surface of shallow water under gravity conditions, which

has been widely used in math-physical field related to nonlinear wave phenomena, such as ion-

sound in plasma and, nonlinear lattice waves [1, 2]. In general, the equation has the following

form:

utt(x, t) = uxx(x, t) + quxxxx(x, t) + (u2(x, t))xx ,

where q = ±1. When q = 1, it is the so-called bad Boussinesq equation and is ill-posed;

whereas when q = −1, it is called a good Boussinesq equation and is well-posed. Many well

known methods, such as the inverse scattering transform method, bilinear formalism, and the

Bäcklund transformation method, can be used to handle the completely integrable Boussinesq

equation [3]. Bogolubsky [4, 5] showed that the bad Boussinesq equation describes a spurious
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instability of short wavelengths and its Cauchy problem is incorrect. Consequently Makhankov

[2] demonstrated that the bad Boussinesq equation could be approximated using the improved

Boussinesq equation (IBq for short) by replacing the term uxxxx with uxxtt:

utt − uxx − (u2)xx − uxxtt = 0. (1.1)

The Eq. (1.1) arises in acoustic waves on elastic rods with circular cross-sections when transverse

motion and nonlinearity are examined [6], moreover, the improved Boussinesq equation is used

to describe wave propagation at right angles to the magnetic field and is more suitable for

numerical simulation than the bad Boussinesq equation. To some extent, it has been explored

theoretically by several authors. Abdou [7] obtained the generalized solution and period solution

of (1.1) using the Exp-function method. The sine or cosine ansatz method was utilized by

Wazwaz [8] to find many compact and non-compact solutions of (1.1) with variants. In spite

of these special soliton-type solutions, it is difficult to find an analytical solution satisfying a

particular choice of initial conditions in most situations. Therefore, the main approach depends

on solving the problem numerically.

The finite difference method is popular owing to its simplicity and ease of manipulation.

Bogolubsky [5], Iskandar and Jain [9] were the first to study (1.1) using a three-level implicit

nonlinear scheme with second-order accuracy. Later, Zoheiry [10] provided a three-level itera-

tion relation based on the implicit compact difference scheme to improve the accuracy in space.

Bratsos [11] used the typical second-order difference method to reduce (1.1) to a system of or-

dinary differential equations and developed a predict-correction scheme based on two different

proper Padé approximations for the same matrix index term. The stability analysis was also

presented. The scheme is complicated and the computational effort required is considerable.

The finite element method is also widely used for its geometric flexibility, Dursun and Irk [12]

proposed two difference schemes and two quintic B-spline finite element collocation methods

based on the second and third-order time discretization methods, these schemes were compared

with each other subsequently. Lin and Wu [13] presented a finite element scheme based on

the linear B spline. Inc and Evans [14] solved (1.1) using the domian decomposition method,

which is a series expansion method, and the solution is expressed as a convergent series. An

approximation for the solution is obtained by truncating the series after retaining a sufficient

number of terms. Indeed, it is more accurate than the finite element method but has a great

computational load.

The finite volume element method has widespread use due to its capability for local conser-

vation. Zhang and Lu [15] developed a quadratic finite volume element method for (1.1). Wang

and Zhang [16] applied this method to the stochastic damped Improved Boussinesq equation.

This method seems to yield better results than the ordinary central finite difference method,

but has the same second-order accuracy.

In this paper, we consider the damped Improved Boussinesq equation of the following form:

utt − uxx − (u2)xx − uxxtt = −τsut + τhutxx, (1.2)

where in the right-hand terms, τsut, τhutxx denote the effect of Stokes damping and hydrody-

namic damping [17,18] respectively, and the coefficients should satisfy τs ≥ 0 and τh ≥ 0. It is

clear that the damped IBq (1.2) reduces to the IBq (1.1) when τs = τh = 0.

The compact finite difference scheme [21,22] has enjoyed great popularity in computational

dynamics and electromagnetic and computational acoustics due to its high accuracy, compact

stencils, and high resolution compared with the ordinary central finite difference scheme. We


