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Abstract

In this paper, a generalized augmented Lagrangian-successive over-relaxation (GAL-

SOR) iteration method is presented for solving saddle-point systems arising from distribut-

ed control problems. The convergence properties of the GAL-SOR method are studied in

detail. Moreover, when 0 < ω ≤ 1 and Q = 1
γ
I, the spectral properties for the precondi-

tioned matrix are analyzed. Numerical experiments show that if the mass matrix from the

distributed control problems is not easy to inverse and the regularization parameter β is

very small, the GAL-SOR iteration method can work well.
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1. Introduction

Consider the distributed control problem which consists of a cost functional to be minimized

subject to a partial differential equation problem posed on a domain Ω ⊂ R2 or R3:

min
u, f

1

2
∥u− u∗∥22 + β∥f∥22,

subject to


−∇2u = f in Ω,

u = g1 on Γ1 ,
∂u
∂n = g2 on Γ2,

(1.1)

where Γ1 and Γ2 are the boundary of Ω, Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω. β ∈ R+ is a

regularization parameter. The function u∗ represents the desired state. For recent references

on this topic, see [1, 2, 17,19,26–28].

There are two approaches to obtain the solution of the PDE-constrained optimal problem

(1.1), i.e., the discretize-then-optimize approach and the optimize-then-discretize approach.

Following the discretize-then-optimize approach [1,28], the discretized form for the minimization

problem (1.1) can be written as [1, 6, 12,17]:

min
u,f

1

2
uTMu− uT p+ ∥u∗∥22 + βfTMf,

subject to Ku = Mf + d,

(1.2)
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where M ∈ Rm×m is the mass matrix and usually is symmetric definite positive. K ∈ Rm×m is

the stiffness matrix (the discrete Laplacian), d ∈ Rm represents the boundary data, and p ∈ Rm

is the Galerkin projection of the discrete state u∗. By applying the Lagrangian multiplier

method to (1.2), it follows the linear system2βM 0 −M

0 M KT

−M K 0

fu
v

 =

0p
d

 , (1.3)

where v is a vector of Lagrange multiplier. See [17,19] for more details.

Denote

A =

[
2βM 0

0 M

]
, B = [−M K], y = [fT , uT ]T and c = [0T , pT ]T ,

then the linear system (1.3) can be rewritten as the following saddle-point system:[
A BT

B 0

] [
y

v

]
=

[
c

d

]
, (1.4)

where A ∈ Rn×n is symmetric positive definite (SPD) with n = 2m, B ∈ Rm×n is full rank in

row.

Systems of the form (1.4) appear in many applications such as constrained optimization [24],

and constrained least squares problems [5, 16, 22]. Many efficient methods have been proposed

for solving the linear system (1.4), see [8, 9, 20] and references therein.

In [14], Golub, Wu and Yuan proposed an SOR-like method for solving the linear system

(1.4). Later, some researchers generalized the SOR-like method. For example, Drvishi and

Hessari proposed an SSOR-like method in [10]. Shao, Shen and Li [23] generalized the SOR-

like method by introducing a new parameter. Guo, Li and Wu proposed a modified SOR-like

method [15]. Bai, Parlett and Wang [4] introduced another generalized SOR method and gave

the optimal iteration parameter, and so on.

When the parameters are chosen appropriately, the existing methods are efficient. However,

it is usually difficult to determine the iteration parameters.

For the PDE-constrained optimal problem, the regularization parameter β is often very

small. Therefore, the (1,1) block matrix of the coefficient matrix of (1.4) is ill-conditioned.

Then we can use the augmented Lagrangian technique [7] to rewrite the original saddle point

system into an equivalent system. The equivalent form of the system (1.4) is:[
A+ γBTB BT

−B 0

] [
y

v

]
=

[
c+ γBT d

−d

]
,

where γ > 0 is a Lagrangian parameter.

In the following of this paper, we will use a generalized augmented Lagrangian technique to

obtain the following equivalent form first:

Ax ≡
[
A+BTQ−1B BT

−B 0

] [
y

v

]
=

[
c+BTQ−1d

−d

]
≡ b, (1.5)

where Q ∈ Rm×m is a generalized Lagrangian parameter matrix and usually is symmetric

positive definite. In practical computations, the matrix Q is chosen such that it is easy to


