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Abstract

This paper presents a strong predictor-corrector method for the numerical solution

of stochastic delay differential equations (SDDEs) of Itô-type. The method is proved to

be mean-square convergent of order min{1/2, p̂} under the Lipschitz condition and the

linear growth condition, where p̂ is the exponent of Hölder condition of the initial function.

Stability criteria for this type of method are derived. It is shown that for certain choices of

the flexible parameter p the derived method can have a better stability property than more

commonly used numerical methods. That is, for some p, the asymptotic MS-stability bound

of the method will be much larger than that of the Euler-Maruyama method. Numerical

results are reported confirming convergence properties and comparing stability properties

of methods with different parameters p. Finally, the vectorised simulation is discussed and

it is shown that this implementation is much more efficient.
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1. Introduction

In many scientific fields, such as biology, economics, medicine and finance, stochastic delay

differential equations (SDDEs) are often used to model complex dynamics. Such equations

generalize both deterministic delay differential equations (DDEs) and stochastic ordinary dif-

ferential equations (SODEs). For the general theory on SDDEs, one can refer to Mao [22] and

Mohammed [24].

Explicit solutions of SDDEs can rarely be obtained. Thus, it has become an important

issue to develop numerical methods for SDDEs. In the last several decades, the research in
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the computational implementation and the numerical analysis for SODEs has made a lot of

advances. An overview of these results can be found in some monographs and survey papers,

see for example [1, 12, 13, 15, 25, 27].

The research into numerical methods for SDDEs is relatively new, compared with that for

DDEs and SODEs. In recent years a number of numerical methods have been developed for

SDDEs. For an introduction to the numerical analysis of SDDEs see Buckwar [7]. Baker &

Buckwar [3] and Buckwar [8] derived several convergence results for one-step methods. Küchler

& Platen [18] proposed the adapted low order Taylor methods for SDDEs. Moreover, for linear

SDDEs, Baker & Buckwar [4], Cao, Liu & Fan [21] and Wang & Zhang [26] studied the stability

properties of Euler-Maruyama method, semi-Euler method and Milstein method, respectively.

As in the deterministic case, using an explicit numerical scheme to solve a stiff system often

results in instability and hence generates an inaccurate numerical solution. However, when

an implicit method is used, the numerical stability and the computational accuracy can be

greatly improved (cf. [14]). Hence, implicit numerical methods are preferred for the effective

computation of numerical solutions to stiff systems. In the references [2,17,23], for solving stiff

SODEs, the authors introduced implicitness into the approximation of the diffusion term and

obtained several classes of the balanced implicit method. Here, an SODE is said to be stiff if it

has widely varying lyapunov exponents. To implement an implicit method, generally speaking,

an algebraic equation has to be solved at each time step, leading to a large computational

cost. In order to resolve this difficulty, in papers [5, 6, 10], authors presented a few predictor-

corrector schemes. Furthermore, Li et al. developed a family of strong predictor-corrector Euler-

Maruyama methods for SODEs with Markovian switching, which were shown to converge with

strong order 0.5 in [20]. But they did not take time delays into account. For SDDE with constant

delay in Stratonovich form, Cao et al. [11] presented a predictor-corrector scheme using the

Wong-Zakai approximation as an intermediate step, and proved the predictor-corrector scheme

is of half-order convergence in the mean-square. This method was derived from the trapezoidal

rule and does not have any free parameters. However, the performance of the predictor-corrector

methods presented in this paper is tunable through the use of a free parameter p that controls

the size of its stability region and hence the step size.

So far, to the best of our knowledge, no strong predictor-corrector scheme has been applied

to SDDEs in Itô form. Hence in this paper we will focus on such a topic. We attempt to avoid

implicit methods by using explicit methods with larger stability regions to deal with moderately

stiff problems. The strong Euler predictor-corrector methods will be extended to solve SDDEs

of Itô-type. The adapted method will be proved to be convergent of order min{1/2, p̂} under

the Lipschitz condition and the linear growth condition, where p̂ is the exponent of Hölder

condition of the initial function. We also investigate the asymptotic mean-square stability of

the extended predictor-corrector method. Numerical stability criterion is derived which shows

that this type of method preserves the asymptotic MS-stability of the underlying equation.

Numerical examples will be given to illustrate these theoretical results. It is shown that for

certain choices of the flexible parameter p the method presented here can have a larger stability

bound than the Euler-Maruyama method. We also demonstrate that substantial speed-ups are

possible by vectorising across the simulations the implementation of the numerical method.

2. The Strong Predictor-corrector Method

Let W (t) be a one-dimensional standard Wiener process defined on the filtered probability

space (Ω,A , P ), and C([−τ, 0];R) denote the Banach space consisting of all continuous paths


