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Abstract

This paper presents a detailed review of both theory and algorithms for the Cheeger

cut based on the graph 1-Laplacian. In virtue of the cell structure of the feasible set, we

propose a cell descend (CD) framework for achieving the Cheeger cut. While plugging the

relaxation to guarantee the decrease of the objective value in the feasible set, from which

both the inverse power (IP) method and the steepest descent (SD) method can also be

recovered, we are able to get two specified CD methods. Comparisons of all these methods

are conducted on several typical graphs.
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1. Introduction

Graph cut, partitioning the vertices of a graph into two or more disjoint subsets, is a

fundamental problem in graph theory [1]. It is a very powerful tool in data clustering with wide

applications ranging from statistics, computer learning, image processing, biology to social

sciences [2]. There exist several kinds of balanced graph cut [3–5]. The Cheeger cut [6], which

has recently been shown to provide excellent classification results [7–9], is one of them and its

definition is as follows. Let G = (V,E) denote a undirected and unweighted graph with vertex

set V = {1, 2, · · · , n} and edge set E. Each edge e ∈ E is a pair of vertices {i, j}. For any

vertex i, the degree of i, denoted by di, is defined to be the number of edges passing through i.

Let S and T be two nonempty subsets of V and use

E(S, T ) =
{
{i, j} ∈ E : i ∈ S, j ∈ T

}
to denote the set of edges between S and T . The edge boundary of S is ∂S = E(S, Sc) (Sc is

the complement of S in V ) and the volume of S is defined to be vol(S) :=
∑

i∈S di. The number

h(G) = min
S⊂V,S ̸∈{∅,V }

|∂S|
min{vol(S), vol(Sc)}

is called the Cheeger constant, and a partition (S, Sc) of V is called a Cheeger cut of G if

|∂S|
min{vol(S), vol(Sc)}

= h(G),
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where |∂S| is the cardinality of the set ∂S.

However, solving analytically the Cheeger cut problem is combinatorially NP-hard [7, 8]. Ap-

proximate solutions are required. The most well-known approach to approximate the Cheeger

cut solutions is the spectral clustering method, which relaxes the original discrete combina-

tion optimization problem into a continuous function optimization problem through the graph

Laplacian [10]. The (normalized) standard graph Laplacian (i.e. the 2-Laplacian) is defined

as L = I −D−1/2AD−1/2, where I is the identity matrix, D = diag(d1, · · · , dn) is a diagonal

matrix and A the adjacency matrix of G. According to the linear spectral graph theory, the

eigenvalues of L satisfy 0 = λ1 ≤ · · · ≤ λn ≤ 2 and the second eigenvalue λ2 can be used to

bound the Cheeger constant as follows

λ2

2
≤ h(G) ≤

√
2λ2, (1.1)

which is nothing but the Cheeger inequality [1]. Furthermore, the corresponding second eigen-

vector is also used to approximate the Cheeger cut, i.e. the 2-spectral clustering or the ℓ2

relaxation. It should be noted that this second eigenvector is not the Cheeger cut, but only an

approximation [10].

In order to achieve a better cut than the ℓ2 relaxation, a spectral clustering based on the

graph p-Laplacian defined by

(∆px)i =
∑
j∼i

|xi − xj |p−1 sign(xi − xj)

with small p ∈ (1, 2) was proposed, in view of the fact that the cut by threshold the second

eigenvector of the graph p-Laplacian tends to the Cheeger cut as p → 1+ [11]. Here j ∼ i

denotes vertex j is adjacent to vertex i,
∑

j∼i means the summation is with respect to all

vertices adjacent to vertex i, and sign(t) is the standard sign function which equals to 1 if t > 0,

0 if t = 0, and −1 if t < 0. The resulting ℓp relaxation∑
i∼j

∣∣xi − xj

∣∣p
n∑

i=1

di
∣∣xi

∣∣p (1.2)

is differentiable but nonconvex, so that standard Newton-like methods can be applied, but only

local minimizers are obtained. In actual calculations, multiple runs with random initializations

are taken to approximate the global minimizer.

All above mentioned p-spectral clustering for any p ∈ (1, 2] are indirect methods.

Since the second (the first non-zero) eigenvalue of 1-Laplacian (see Definition 1.1) for con-

nected graphs equals to the Cheeger constant, and the corresponding eigenvectors provide exact

solutions of the Cheeger cut problem [7, 12]. We study the numerical solution of the second

eigenvector of the graph 1-Laplacian.

However, the ℓ1 nonlinear eigenvalue problem (the corresponding object function is obtained

by setting p = 1 in Eq. (1.2)) is not only nonconvex but also nondifferentiable. Three types of

algorithms have been proposed to minimize the 1-spectral clustering problem. They are: the

Split-Bregman like ratio minimization algorithm [7], the inverse power (IP) method [8], and

the steepest descent (SD) algorithm [13]. Unfortunately, all these methods fail to give global

minimizers.


