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Abstract

The higher order wave equation of KdV type, which describes many important physical

phenomena, has been investigated widely in last several decades. In this work, multi-

symplectic formulations for the higher order wave equation of KdV type are presented,

and the local conservation laws are shown to correspond to certain well-known Hamiltonian

functionals. The multi-symplectic discretization of each formulation is calculated by the

multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out,

which verify the efficiency of the Fourier pseudospectral method.
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1. Introduction

As is well known, the Korteweg-de Vries (KdV) equation represents a first order approxi-

mation in the study of long wavelength, small amplitude waves of inviscid and incompressible

fluid. In this paper, we consider the higher order wave equation of KdV type [1-5]

vt −
3

2
βρ2vxxt + β(1 − 3

2
ρ2)vxxx + αvvx − 1

2
αβρ2(vvxxx + 2vxvxx) = 0. (1.1)

Exact solutions for some special set of parameters of the equation (1.1) have been studied

by many authors. In [6], Long et al. proved the existence of all traveling wave solutions, and

obtained two explicit parametric representations of periodic solutions of equation (1.1). In [7],

Long et al. obtained the explicit and implicit traveling wave solutions of equation (1.1). In

[8], Rui et al. obtained new traveling wave solutions, explicit solutions of parametric type of

equation (1.1) by integral bifurcation method.

Several numerical methods for Eq. (1.1) have been studied in recent years. In [2], the

equation (1.1) has been solved numerically by pseudospectral method. However, since the

numerical method used in [2] is not structure-preserving, all the qualitative behaviors such as

norm conservation has been lost in the discretization. In 1984, Feng [9] proposed a structure-

preserving algorithm to compute partial differential equations from the view point of symplectic

geometry. However, the disadvantage of this method is that it is global. To overcome this

limitation, Bridge and Reich [12] presented a multi-symplectic algorithm based on a multi-

symplectic structure of some partial differential equations.

* Received June 8, 2013 / Revised version received February 10, 2015 / Accepted February 16, 2015 /

Published online July 17, 2015 /



380 J.J. WANG

One of the most popular multi-symplectic algorithms is Fourier pseudospectral method

which has been proven very powerful for periodic initial value problems with constant coeffi-

cients. The Fourier pseudospectral method is successfully applied to model wave propagation.

Note that Eq. (1.1) represents a multi-symplectic Hamiltonian system. This paper is organized

as follows. In Section 2, the multi-symplectic Hamiltonian formulations for (1.1) are estab-

lished and some conservation properties are obtained. In Section 3, devotes to the construction

of multi-symplectic Fourier pseudospectral method. In Section 4, numerical experiments are

given.

2. Multi-symplectic Structure for (1.1)

By the multi-symplectic theory [12-31], we know that many conservative systems can be

written as multi-symplectic Hamiltonian equations

Mzt +Kzx = ∇zS(z), (2.1)

where M, K ∈ Rd×d are the skew-symmetric matrices, z(x, t) is the vector of state variables,

S : Rn → R is a smooth function, and ∇zS(z) denotes the gradient of the function S = S(z)

with respect to variable z.

Eq. (2.1) satisfied the multi-symplectic conservation law (MSCL)

∂

∂t
w +

∂

∂x
k = 0, (2.2)

where

w =
1

2
dz ∧Mdz, k =

1

2
dz ∧Kdz. (2.3)

Moreover, Eq. (2.1) satisfies the local energy conservation law (LECL)

∂

∂t
E +

∂

∂x
F = 0, (2.4)

and local momentum conservation law (LMCL)

∂

∂t
I +

∂

∂x
G = 0, (2.5)

where

E = S(z)− 1

2
zTKzx, F =

1

2
zTKzt, I =

1

2
zTMzx, G = S(z)− 1

2
zTMzt.

By introducing new variables v = ux, the higher order wave equation of KdV type (1.1) can

be written as

uxt −
3

2
βρ2uxxxt + β(1 − 3

2
ρ2)uxxxx + αuxuxx − 1

2
αβρ2(uxuxxxx + 2uxxuxxx) = 0. (2.6)

If we define the Lagrange function

L(x, t, u, ux, ut, uxx, uxt, utt)

= − 1

2
uxut −

3

4
βρ2uxxuxt +

β

2

(

1− 3

2
ρ2

)

u2xx − 1

6
αv3x − 1

4
αβρuxu

2
xx, (2.7)


